GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-19
    Description: During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m−2 d−1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Marine isoprene plays a crucial role in the formation of secondary organic aerosol within the remote marine boundary layer. Due to scarce field measurements of oceanic isoprene and limited laboratory-based studies of isoprene production, assessing the importance of marine isoprene on atmospheric chemistry and climate is challenging. Calculating in-field isoprene production rates is a crucial step to predict marine isoprene concentrations and the subsequent emissions to the atmosphere. The distribution, sources, and dominant environmental factors of isoprene were determined in the Northwest Pacific Ocean in 2019. The nutrient enrichment in the Kuroshio Oyashio Extension (KOE) surface seawater, driven by the upwelling and atmospheric deposition, promoted the growth of phytoplankton and elevated the isoprene concentration. This was confirmed by observed responses of isoprene to nutrients and aerosol dust additions in a ship-based incubation experiment, where the isoprene concentrations increased by 70% (t = 4.417, p 〈 0.001) and 35% (t = 2.387, p 〈 0.05), respectively. Biogenic isoprene production rates in the deck incubation experiments were positively related to chlorophyll a, temperature, and solar radiation, with an average production of 7.33 +/- 4.27 pmol L (-1) day (-1). Photochemical degradation of dissolved organic matter was likely an abiotic source of isoprene, contributing to approximately 14% of the total production. Driven by high isoprene production and extreme physical disturbance, the KOE showed very high emissions of isoprene of 46.0 +/- 13.0 nmol m(-2) day (-1), which led to a significant influence on the oxidative capacity of the local atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-03
    Description: Carbon disulfide (CS2) has recently gained attention as an important precursor for the atmospheric trace gas carbonyl sulfide (OCS), which delivers sulfur to the stratospheric sulfur layer and impacts the radiative budget of the Earth. CS2 is naturally produced in the ocean and emitted to the atmosphere. However, the magnitude of its marine emissions is only poorly constrained due to lacking understanding of its production and consumption processes. Here, we present incubation experiments with and without UV light treatment and provide evidence for a previously not considered UV-light-driven degradation process of CS2 in seawater, following first-order kinetics. In addition to its already known photochemical production process, CS2 production is found in the dark, depending on the amount of dissolved organic sulfur present in seawater. We provide novel production and consumption rates of CS2 in seawater that pave the way toward mechanistically quantifying marine emissions of this important trace gas. Key Points: - Carbon disulfide in seawater is degraded by UV light at time scales of days - Carbon disulfide is produced in seawater without UV light at rates comparable to photochemical production - Carbon disulfide dark production is limited by dissolved organic sulfur
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...