GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • Wiley-Blackwell  (1)
  • 1
    Publication Date: 2019-09-23
    Description: We analyse the fluid flow regime within sediments on the Eastern levee of the modern Mississippi Canyon using 3D seismic data and downhole logging data acquired at Sites U1322 and U1324 during the 2005 Integrated Ocean Drilling Program (IODP) Expedition 308 in the Gulf of Mexico. Sulphate and methane concentrations in pore water show that sulphate–methane transition zone, at 74 and 94 m below seafloor, are amongst the deepest ever found in a sedimentary basin. This is in part due to a basinward fluid flow in a buried turbiditic channel (Blue Unit, 1000 mbsf), which separates sedimentary compartments located below and above this unit, preventing normal upward methane flux to the seafloor. Overpressure in the lower compartment leads to episodic and focused fluid migration through deep conduits that bypass the upper compartment, forming mud volcanoes at the seabed. This may also favour seawater circulation and we interpret the deep sulphate–methane transition zones as a result of high downward sulphate fluxes coming from seawater that are about 5–10 times above those measured in other basins. The results show that geochemical reactions within shallow sediments are dominated by seawater downwelling in the Mars-Ursa basin, compared to other basins in which the upward fluid flux is controlling methane-related reactions. This has implications for the occurrence of gas hydrates in the subsurface and is evidence of the active connection between buried sediments and the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-20
    Description: Submersible investigations of the Cascadia accretionary complex have identified localized venting of methane gas bubbles in association with gas hydrate occurrence. Acoustic profiles of these bubble plumes in the water column in the vicinity of Hydrate Ridge offshore Oregon provide new constraints on the spatial distribution of these gas vents and the fate of the gas in the water column. The gas vent sites remained active over the span of two years, but varied dramatically on time scales of a few hours. All plumes emanated from local topographic highs near the summit of ridge structures. The acoustic images of the bubble plumes in the water column disappear at water depths between 500 to 460 m, independent of the seafloor depth. This coincides with the predicted depth of the gas hydrate stability boundary of 510 to 490 m, suggesting that the presence of a hydrate skin on the bubble surface prevents them from rapid dissolution. The upper limit of the acoustic bubble plumes at 460 m suggests that dissolution of the residual bubbles is relatively rapid above the hydrate stability zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-16
    Description: To constrain the fluxes of methane (CH4) in the water column above the accretionary wedge along the Cascadia continental margin, we measured methane and its stable carbon isotope signature (δ13C-CH4). The studies focused on Hydrate Ridge (HR), where venting occurs in the presence of gas-hydrate-bearing sediments. The vent CH4 has a light δ13C-CH4 biogenic signature (−63 to −66‰ PDB) and forms thin zones of elevated methane concentrations several tens of meters above the ocean floor in the overlying water column. These concentrations, ranging up to 4400 nmol L−1, vary by 3 orders of magnitude over periods of only a few hours. The poleward undercurrent of the California Current system rapidly dilutes the vent methane and distributes it widely within the gas hydrate stability zone (GHSZ). Above 480 m water depth, the methane budget is dominated by isotopically heavier CH4 from the shelf and upper slope, where mixtures of various local biogenic and thermogenic methane sources were detected (−56 to −28‰ PDB). The distribution of dissolved methane in the working area can be represented by mixtures of methane from the two primary source regions with an isotopically heavy background component (−25 to −6‰ PDB). Methane oxidation rates of 0.09 to 4.1% per day are small in comparison to the timescales of advection. This highly variable physical regime precludes a simple characterization and tracing of “downcurrent” plumes. However, methane inventories and current measurements suggest a methane flux of approximately 3 × 104 mol h−1 for the working area (1230 km2), and this is dominated by the shallower sources. We estimate that the combined vent sites on HR produce 0.6 × 104 mol h−1, and this is primarily released in the gas phase rather than dissolved within fluid seeps. There is no evidence that significant amounts of this methane are released to the atmosphere locally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...