GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Society for Biochemistry and Molecular Biology (ASBMB)  (2)
  • AGU (American Geophysical Union)  (1)
  • 1
    Publication Date: 2018-02-06
    Description: Digital hydrographic data combined with satellite thermal infrared and visible band remote sensing provide a synoptic climatological view of the shallow planktonic environment. This paper uses wind, hydrographic, and ocean remote sensing data to examine southwest monsoon controls on the foraminiferal faunal composition of Recent seafloor sediments of the northwestern Arabian Sea. Ekman pumping resulting in open-ocean upwelling and coastal upwelling create two distinctly different mixed layer plankton environments in the northwestern Arabian Sea during the summer monsoon. Open-sea upwelling to the northwest of the mean July position of the Findlater Jet axis yields a mixed layer environment with temperatures of less than 25°C to about 26.5°C, phytoplankton pigment concentrations between 1.5 and 5.0 mg/m³, and mixed layer depths less than 50 m. Convergence in the Ekman layer in the central Arabian Sea drives the formation of a mixed layer that is greater than 50 m thick, warmer than about 26.5°C, and has phytoplankton pigment concentrations generally below 2.0 mg/m³. Coastal upwelling creates an extremely eutrophic plankton environment that persists over and immediately adjacent to the Omani shelf and undergoes significant offshore transport only within topographically induced coastal squirts. The foraminiferal faunal composition of upper Pleistocene deep-sea sediments of the northwestern Arabian Sea are mainly controlled by vertical nutrient fluxes caused by Ekman pumping, not coastal upwelling. Transfer functions for late Pleistocene mixed layer depth, temperature, and chlorophyll have been obtained through factor analysis and nonlinear multiple regression between late summer mixed layer environment and Recent sediment faunal observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-14
    Description: Numerous Gram-negative bacterial pathogens use type III secretion systems to deliver effector molecules into the cytoplasm of a host cell. Many of these effectors have evolved to manipulate the host ubiquitin system to alter host cell physiology or the location, stability, or function of the effector itself. ExoU is a potent A2 phospholipase used by Pseudomonas aeruginosa to destroy membranes of infected cells. The enzyme is held in an inactive state inside of the bacterium due to the absence of a required eukaryotic activator, which was recently identified as ubiquitin. This study sought to identify the region of ExoU required to mediate this interaction and determine the properties of ubiquitin important for binding, ExoU activation, or both. Biochemical and biophysical approaches were used to map the ubiquitin-binding domain to a C-terminal four-helix bundle of ExoU. The hydrophobic patch of ubiquitin is required for full binding affinity and activation. Binding and activation were uncoupled by introducing an L8R substitution in ubiquitin. Purified L8R demonstrated a parental binding phenotype to ExoU but did not activate the phospholipase in vitro. Utilizing these new biochemical data and intermolecular distance measurements by double electron-electron resonance, we propose a model for an ExoU-monoubiquitin complex.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-13
    Description: The homeobox transcription factor Mohawk (Mkx) is a potent transcriptional repressor expressed in the embryonic precursors of skeletal muscle, cartilage, and bone. MKX has recently been shown to be a critical regulator of musculoskeletal tissue differentiation and gene expression; however, the genetic pathways through which MKX functions and its DNA-binding properties are currently unknown. Using a modified bacterial one-hybrid site selection assay, we determined the core DNA-recognition motif of the mouse monomeric Mkx homeodomain to be A-C-A. Using cell-based assays, we have identified a minimal Mkx-responsive element (MRE) located within the Mkx promoter, which is composed of a highly conserved inverted repeat of the core Mkx recognition motif. Using the minimal MRE sequence, we have further identified conserved MREs within the locus of Sox6, a transcription factor that represses slow fiber gene expression during skeletal muscle differentiation. Real-time PCR and immunostaining of in vitro differentiated muscle satellite cells isolated from Mkx-null mice revealed an increase in the expression of Sox6 and down-regulation of slow fiber structural genes. Together, these data identify the unique DNA-recognition properties of MKX and reveal a novel role for Mkx in promoting slow fiber type specification during skeletal muscle differentiation.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...