GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Characteristics of the seasonal and interannual sea surface temperature (SST) variability in the eastern equatorial Pacific (EEP) over last two interglacials, the Holocene and Eemian, are analyzed using transient climate simulations with the Kiel Climate Model (KCM). There is a tendency towards a strengthening of the seasonal as well as the El Niño/Southern Oscillation‐ (ENSO) related variability from the early to the late interglacials. The weaker EEP SST annual cycle during the early interglacials is mainly result of insolation‐forced cooling during its warm phase and dynamically‐induced warming during its cold phase. Enhanced convection over northern South America weakens northeasterlies in the EEP leading to weaker equatorial upwelling, deeper thermocline and subsequent warming in this region. We show that a negative ENSO modulation of the annual cycle operates only on short timescales and does not affect their evolution on orbital time scales where both ENSO and annual cycle show similar tendencies to increase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO2) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. To this end the Kiel Climate Model), a global climate model, is employed to study the influences of the changing geometry and CO2-concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15–20 %. The narrowing of the Indonesian Passages enhances ENSO strength but only by about 6 %. ENSO period changes are modest and the spectral ENSO peak stays rather broad. Annual cycle changes are more prominent. An intensification of the annual cycle by about 50 % is simulated in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. In comparison to the closing of the Panama Seaway, the narrowing of the Indonesian Passages only drives relatively weak changes in the annual cycle. A robust relationship is found such that ENSO amplitude strengthens when the annual cycle amplitude weakens.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: We report fossil coral records from the Seychelles comprising individual time slices of 14–20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990–2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2–5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere–ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean–atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 25 . PA4217.
    Publication Date: 2019-09-23
    Description: Past sea surface temperatures (SSTs) are routinely estimated from organic and inorganic remains of fossil phytoplankton or zooplankton organisms, recovered from sea floor sediments. Potential seasonal biases of paleo proxies were intensely studied in the past, however, even for the two most commonly used paleo proxies for SST, UK0 37 and Mg/Ca ratios, a clear global picture does not yet exist. In the present study we combine Holocene SST trends derived from UK0 37 and Mg/Ca ratios with results from idealized climate model simulations forced by changes in the orbital conguration, which represents the major climate driver over the last 10 kyrs. Such changes cause a spatio-temporal redistribution of incoming solar radiation resulting in a modulation of amplitude and phasing of the seasonal cycle. Considering that the climate signal recorded by a plankton-based paleo proxy may be aected by the seasonal productivity cycle of the respective organism, we use the modern relationship between SST and marine net primary production (NPP), both obtained from satellite observations, to calculate a seasonality index (SI) as an independent constraint to link modeled SST trends with proxy data. Although the climate model systematically underestimates Holocene SST trends, we find that seasonal productivity peaks of the phytoplankton-based UK0 37 result in a preferential registering of the warm (cold) season in high (low) latitudes, as it was expected from the SI distribution. The overall smoother trends from the zooplankton-derived Mg/Ca-SSTs suggest a more integrated signal over longer time averages, which may also carry a seasonal bias, but the spatial pattern is less clear. Based on our ndings, careful multi-proxy approaches can actually go beyond the reconstruction of average climate trends, specifically allowing to resolve the evolution of seasonality.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 . L15708.
    Publication Date: 2019-09-23
    Description: The intensity of the two major atmospheric tropical circulations, the Hadley and Walker circulation, has been analyzed in simulations with the Kiel Climate Model (KCM) of the early Eemian and the early Holocene, both warmer climate epochs compared to the late Holocene, or pre-industrial era. The KCM was forced by changes in orbital parameters corresponding to the early and late Holocene (9.5kyr BP and pre-industrial) and the early Eemian (126kyr BP). An intensification of the Southern Hemisphere (SH) winter Hadley cell and a northward extension of its rising branch, the Intertropical Convergence Zone, relative to pre-industrial are simulated for both warm periods. The Walker circulation's rising branch is shifted westward towards the Indian Ocean due to an increased zonal tropical sea surface temperature (SST) gradient across the Indo-Pacific Ocean, which drives enhanced easterlies over this region. The simulated vertically-integrated water vapor transport across the Equator shows the strongest response for the SH winter (boreal summer) Hadley cell over the Pacific Ocean due to an enhanced cross-equatorial SST gradient in the tropical Pacific during the early Holocene and the early Eemian. The orbitally-induced increase of the cross-equatorial insolation gradient in the tropical Pacific leads to a strengthening (weakening) of the wind speed and enhanced (reduced) evaporative cooling over the southern (northern) tropical Pacific, which reinforces the initial radiatively-forced meridional SST gradient change. The increased cross-equatorial insolation gradient in combination with the strong wind-evaporation-SST feedback and changing humidity are important mechanisms to enhance the SH winter Hadley circulation response to orbital forcing. Key Points: Intensification of the SH winter Hadley cell for the early Holocene and Eemian. Walker circulation's rising branch is shifted westward towards the Indian Ocean. WES feedback plays key role in intensification of the Hadley circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 37 . L19705.
    Publication Date: 2019-09-23
    Description: The sensitivity of the hydrological cycle to changes in orbital forcing and atmospheric greenhouse gas (GHG) concentrations is assessed using a fully coupled atmosphere-ocean-sea ice general circulation model (Kiel Climate Model). An orbitally-induced intensification of the summer monsoon circulation during the Holocene and Eemian drives enhanced water vapor advection into the Northern Hemisphere, thereby enhancing the rate of water vapor changes by about 30% relative to the rate given by the Clausius-Clapeyron Equation, assuming constant relative humidity. Orbitally-induced changes in hemispheric-mean precipitation are fully attributed to inter-hemispheric water vapor exchange in contrast to a GHG forced warming, where enhanced precipitation is caused by increased both the moisture advection and evaporation. When considering the future climate on millennial time scales, both forcings combined are expected to exert a strong effect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (20). pp. 8530-8537.
    Publication Date: 2019-09-24
    Description: We performed simulations with a global model of ocean biogeochemistry forced with orbitally driven anomalies of oceanic conditions for the mid-Holocene, known as Holocene climate optimum, to investigate natural variability in the eastern equatorial Pacific oxygen minimum zone (EEP OMZ). While the global mean temperature during the mid-Holocene was likely slightly higher than the 1961–1990 mean, the sea surface temperature in the EEP was slightly lower. Mid-Holocene oxygen concentrations in the EEP OMZ are generally increased, locally by up to 50%, and the EEP OMZ volume was, depending on definition of the OMZ threshold, at least 6% lower. These higher oxygen levels are the combined result of competing physical and biogeochemical processes. Our results imply that mechanisms for past changes in the EEP OMZ intensity and extension can differ from the global warming driven decline in oxygen levels observed for the recent decades and predicted for the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Orbital forcing influences climate phenomena by changing incoming solar radiation in season and latitude. Here, changes in the El Niño-Southern Oscillation (ENSO)’s impact on the East Asian winter monsoon (EAWM) due to orbital forcing, especially for three selected time periods in each of two interglacial periods, the Eemian (126, 122, 115 ka) and Holocene (9, 6, 0 ka), are investigated. There was a high negative correlation between ENSO and EAWM when the obliquity was low, the processional angle was large, and especially when accompanied by large eccentricity, which corresponds to a weaker monsoon period. The correlation was also high when ENSO variability was high, which interestingly corresponded to lower obliquity and higher-degree precession periods. Therefore, as both lower obliquity and higher-degree precession, such as during 115 ka and 0 ka, cause the EAWM to be weakened through higher winter insolation over Northern hemisphere, and the ENSO to be enhanced through an intensified zonal contrast of the equatorial sea surface temperature, the relationship between the ENSO and EAWM becomes tighter. The opposite case (i.e., during 126 and 9 ka) is also true dynamically. Furthermore, the sensitivity of boreal winter precipitation against sea surface temperature (SST) anomaly over the tropical Pacific, which depends on mean SST, was positively correlated to the strength of the ENSO-EAWM correlation, implying that the warmer mean ocean surface causes the strong response of atmosphere to change in the SST anomaly, thereby enhancing the impact of ENSO on EAWM. Warmer wintertime tropical SST is attributed to higher insolation over the tropics, especially during 115 and 0 ka, while cooler SSTs occurred during 126 and 9 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 18 (2). GB2015.
    Publication Date: 2018-03-16
    Description: According to a recent study, C:N ratios of sinking particulate organic matter (POM) in the ocean appear to be higher than Redfield (7.1 instead of 6.6) and depth dependent (increase +0.2/km). Here we investigate the effects of vertically variable C:N element ratios on marine carbon fluxes and the air-sea exchange of CO2 using a global ocean carbon cycle model (AAMOCC). For a steady-state ocean, the results show that models using the constant classical Redfield ratio underestimate both, total inventory and vertical gradients of dissolved inorganic carbon (DIC). While the amount of additional DIC (+150 Gt C) is negligible compared to the high marine carbon inventory, the C:N depth dependence can reduce the ambient atmospheric pCO2 by 20 ppm, permanently. Moreover, the simulation of a future scenario, estimating a possible effect of CO2-dependent C:N ratios of POM on the marine carbon cycle, has shown that even a moderate rise in the C:N element ratio of sinking POM, which is on the order of magnitude of natural variability, yields a considerably higher oceanic uptake of anthropogenic CO2 on timescales of decades to centuries. The assumption is based on a predicted increase in the production of highly carbon enriched transparent exopolymer particles (TEP) caused by rising atmospheric CO2 concentrations and enhanced nutrient limitation. However, counteracting a predicted decrease of the physical (solubility) CO2 pump as a consequence of global change, the effect in our scenario will alleviate further rising atmospheric CO2 concentrations rather than compensate a reduced physical uptake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 . L23710.
    Publication Date: 2018-03-21
    Description: Most climate models predict a weakening of the North Atlantic thermohaline circulation for the 21st century when forced by increasing levels of greenhouse gas concentrations. The model spread, however, is rather large, even when the forcing scenario is identical, indicating a large uncertainty in the response to forcing. In order to reduce the model uncertainties a weighting procedure is applied considering the skill of each model in simulating hydrographic properties and observation-based circulation estimates. This procedure yields a “best estimate” for the evolution of the North Atlantic THC during the 21st century by taking into account a measure of model quality. Using 28 projections from 9 different coupled global climate models of a scenario of future CO2 increase (SRESA1B) performed for the upcoming fourth assessment report of the Intergovernmental Panel on Climate Change, the analysis predicts a gradual weakening of the North Atlantic THC by 25(±25)% until 2100.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...