GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (54)
  • AGU (American Geophysical Union)  (49)
  • GeoForschungsZentrum  (3)
Document type
Keywords
  • 11
    Publication Date: 2018-03-13
    Description: Active ridge propagation frequently occurs along spreading ridges and profoundly affects ridge crest segmentation over time. The mechanisms controlling ridge propagation, however, are poorly understood. At the slow spreading Mid-Atlantic Ridge at 21.5°N a seismic refraction and wide-angle reflection profile surveyed the crustal structure along a segment controlled by rapid ridge propagation. Tomographic traveltime inversion of seismic data suggests that the crustal structure along the ridge axis is controlled by melt supply; thus, crust is thickest, 8 km, at the domed segment center and decreases in thickness toward both segment ends. However, thicker crust is formed in the direction of ridge propagation, suggesting that melt is preferentially transferred toward the propagating ridge tip. Further, while seismic layer 2 remains constant along axis, seismic layer 3 shows profound changes in thickness, governing variations in total crustal thickness. This feature supports mantle upwelling at the segment center. Thus, fluid basaltic melt is redistributed easily laterally, while more viscose gabbroic melt tends to crystallize and accrete nearer to the locus of melt supply. The onset of propagation seems to have coincided with the formation of thicker crust, suggesting that propagation initiation might be due to changes in the melt supply. After a rapid initiation a continuous process of propagation was established. The propagation rate seems to be controlled by the amount of magma that reaches the segment ends. The strength of upwelling may govern the evolution of ridge segments and hence ultimately controls the propagation length.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 116 (B10). B10305.
    Publication Date: 2019-09-23
    Description: We developed thermal models for the Chile subduction zone along two profiles at 38.2°S and 42°S within the rupture area of the 1960 M = 9.5 Valdivia earthquake and south of the 2010 M = 8.8 Maule earthquake. The age difference of the subducting Nazca Plate has a major impact on the thermal regime, being much younger and hotter in the south. Seafloor heat flow observations confirm this difference but also indicate that in the southern area, heat advection at the outer rise cools the incoming plate. Heat flow values derived from the depth of gas hydrate bottom-simulating reflectors are in general agreement with probe and borehole measurements. The positions where the plate interface reaches temperatures of 100–150°C and 350–450°C differ between the two profiles. If these temperatures control the updip and downdip limits of the interplate seismogenic zone, the seismogenic zone widens and shifts landward to greater depths from south to north. Observed microseismicity, however, seems to fade at temperatures much lower than 350–450°C. This discrepancy can be explained in three alternative ways: (1) deformation in a thick subduction channel controls the seismic/aseismic transition; (2) microseismicity recorded over a limited time period does not represent the rupture depth of large interface earthquakes; or (3) the serpentinized mantle wedge controls the downdip limit.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 13 . Q05013.
    Publication Date: 2018-02-28
    Description: Water transported by slabs into the mantle at subduction zones plays key roles in tectonics, magmatism, fluid and volatiles fluxes, and most likely in the chemical evolution of the Earth's oceans and mantle. Yet, incorporation of water into oceanic plates before subduction is a poorly understood process. Several studies suggest that plates may acquire most water at subduction trenches because the ocean crust and uppermost mantle there are intensely faulted caused by bending and/or slab pull, and display anomalously low seismic velocities. The low velocities are interpreted to arise from a combination of fluid-filled fractures associated to normal faulting and mineral transformation by hydration. Mantle hydration by transformation of nominally dry peridotite to water-rich serpentinite could potentially create the largest fluid reservoir in slabs and is therefore the most relevant for the transport of water in the deep mantle. The depth of fracturing by normal-fault earthquakes is usually not well constrained, but could potentially create deep percolation paths for water that might hydrate up to tens of kilometers into the mantle, restrained only by serpentine stability. Yet, interpretation of deep intraplate mineral alteration remains speculative because active-source seismic experiments have sampled only the uppermost few kilometers of mantle, leaving the depth-extent of anomalous velocities and their relation to faulting unconstrained. Here we use a joint inversion of active-source seismic data, and both local and regional earthquakes to map the three dimensional distribution of anomalous velocities under a seismic network deployed at the trench seafloor. We found that anomalous velocities are restrained to the depth of normal-fault micro-earthquake activity recorded in the network, and are considerably shallower than either the rupture depth of teleseismic, normal-fault earthquakes, or the limit of serpentine stability. Extensional micro-earthquakes indicate that each fault in the region slips every 2–3 months which may facilitate regular water percolation. Deeper, teleseismic earthquakes are comparatively infrequent, and possibly do not cause significant fracturing that remains open long enough to promote alteration detectable with our seismic study. Our results show that the stability field of serpentine does not constrain the depth of potential mantle hydration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-06
    Description: Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8–4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15–17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°–50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8–10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (9). pp. 3532-3554.
    Publication Date: 2018-02-28
    Description: Lithospheric formation at slow spreading rates is heterogeneous with multiple modalities, favoring symmetric spreading where magmatism dominates or core complex and inside corner high formation where tectonics dominate. We report microseismicity from three deployments of seismic networks at the Mid-Atlantic Ridge (MAR). Two networks surveyed the MAR near 7 degrees S in the vicinity of the Ascension transform fault. Three inside corner high settings were investigated. However, they remained seismically largely inactive and major seismic activity occurred along the center of the median valley. In contrast, at the Logatchev Massif core complex at 14 degrees 45N seismicity was sparse within the center of the median valley but concentrated along the eastern rift mountains just west of the serpentine hosted Logatchev hydrothermal vent field. To the north and south of the massif, however, seismic activity occurred along the ridge axis, emphasizing the asymmetry of seismicity at the Logatchev segment. Focal mechanisms indicated a large number of reverse faulting events occurring in the vicinity of the vent field at 3-5 km depth, which we interpret to reflect volume expansion accompanying serpentinization. At shallower depth of 2-4 km, some earthquakes in the vicinity of the vent field showed normal faulting behavior, suggesting that normal faults facilitates hydrothermal circulation feeding the vent field. Further, a second set of cross-cutting faults occurred, indicating that the surface location of the field is controlled by local fault systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-02-27
    Description: In this work we investigate the crustal and tectonic structures of the Central Tyrrhenian back-arc basin combining refraction and wide-angle reflection seismic (WAS), gravity, and multichannel seismic (MCS) reflection data, acquired during the MEDOC (MEDiterráneo OCcidental)-2010 survey along a transect crossing the entire basin from Sardinia to Campania at 40°N. The results presented include a ~450 km long 2-D P wave velocity model, obtained by the traveltime inversion of the WAS data, a coincident density model, and a MCS poststack time-migrated profile. We interpret three basement domains with different petrological affinity along the transect based on the comparison of velocity and velocity-derived density models with existing compilations for continental crust, oceanic crust, and exhumed mantle. The first domain includes the continental crust of Sardinia and the conjugate Campania margin. In the Sardinia margin, extension has thinned the crust from ~20 km under the coastline to ~13 km ~60 km seaward. Similarly, the Campania margin is also affected by strong extensional deformation. The second domain, under the Cornaglia Terrace and its conjugate Campania Terrace, appears to be oceanic in nature. However, it shows differences with respect to the reference Atlantic oceanic crust and agrees with that generated in back-arc oceanic settings. The velocities-depth relationships and lack of Moho reflections in seismic records of the third domain (i.e., the Magnaghi and Vavilov basins) support a basement fundamentally made of mantle rocks. The large seamounts of the third domain (e.g., Vavilov) are underlain by 10–20 km wide, relatively low-velocity anomalies interpreted as magmatic bodies locally intruding the mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-06
    Description: At the eastern end of the Azores-Gloria transform fault system to the southwest of Portugal, the plate boundary between Africa and Iberia is a region where deformation is accommodated over a wide tectonically-active area. The region has unleashed large earthquakes and tsunamis, including the Mw ~ 8.5 Great Lisbon earthquake of 1755. Although the source region of the 1755 earthquake is still disputed, most proposals include a source location in the vicinity of the Horseshoe Abyssal Plain (HAP), which is bounded by the 5000 m high Gorringe Bank (GB). In this study we characterise seismic activity in the region using data recorded by two local networks of ocean-bottom seismometers (OBS). The networks were deployed in the eastern HAP and at the GB. The dataset allowed the detection of 160 local earthquakes. These earthquakes cluster around the GB, to the SW of Cabo Sao Vicente, and in the HAP. Focal depths indicate deep-seated earthquakes, with depths increasing from 20-35 km (mean of 26.1 ± 7.2 km) at the GB to 15-45 km (mean 31.5 km ± 10.5 km) under the HAP. Seismic activity thus extends down to levels that are deeper than those mapped by active seismic profiling, with the majority of events occurring within the mantle. Thermal modelling suggests that temperatures of approximately 600 °C characterise the base of the seismogenic brittle lithosphere at ~45 km depth. The large source depth and thermal structure supports previous suggestions that catastrophic seismic rupture through the lithospheric mantle may indeed occur in the area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-04-04
    Description: Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5–7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km) and strike (~005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7–7.3 km s-1. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-05-02
    Description: Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    GeoForschungsZentrum
    In:  [Talk] In: Sonderkolloquium "Geotechnologien", GeoForschungszentrum Potsdam, 09.06.-10.06.2005, Potsdam . Continental margins - earth's focal points of usage and hazard potential ; pp. 18-23 .
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...