GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (14)
  • Elsevier  (3)
  • Springer  (2)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (7). pp. 1155-1172.
    Publication Date: 2020-02-06
    Description: Numerical Earth System Models are generic tools used to extrapolate present climate conditions into a warming future and to explore geoengineering options. Most of the current-generation models feature a simple pelagic biogeochemical model component that is embedded into a three-dimensional ocean general circulation model. The dynamics of these biogeochemical model components is essentially controlled by so-called model parameters most of which are poorly known. Here we explore the feasibility to estimate these parameters in a full-fledged three-dimensional Earth System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability. Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters that prescribe the limiting effect of nutrient- and light-depleted conditions on carbon assimilation by autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they propose strikingly differing projections into a warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-11
    Description: Based on the results of a numerical ocean model, we investigate statistical correlations between wind forcing, surface salinity and freshwater transport out of the Baltic Sea on one hand, and Norwegian coastal current freshwater transport on the other hand. These correlations can be explained in terms of physics and reveal how the two freshwater transports are linked with wind forcing, although this information proves to be non-sufficient when it comes to the dynamics of the Norwegian coastal current. Based on statistical correlations, the Baltic Sea freshwater transport signal is reconstructed and shows a good correlation but a poor variability when compared with the measured signal, at least when data filtered on a two-daily time scale is used. A better variability coherence is reached when data filtered on a weekly or monthly time scale is used. In the latest case, a high degree of precision is reached for the reconstructed signal. Using the same kind of methods for the case of the Norwegian coastal current, the negative peaks of the freshwater transport signal can be reconstructed based on wind data only, but the positive peaks are under-represented although some of them exist mostly because the meridional wind forcing along the Norwegian coast is taken into account. Adding Norwegian coastal salinity data helps improving the reconstruction of the positive peaks, but a major improvement is reached when adding non-linear terms in the statistical reconstruction. All coefficients used to re-construct both freshwater transport signals are provided for use in European Shelf or climate modeling configurations. Highlights : • We model the thermo-haline circulation of the Baltic and North Sea. • We compute statistical correlations between different diagnostics. • We rebuild transports for the Baltic Sea outflow and the Norwegian current. • We use a physical analysis to improve the results of the statistical reconstruction. • We provide coefficients for use in NW European shelf configurations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (11). pp. 4482-4489.
    Publication Date: 2020-06-29
    Description: Growing slowly, marine N2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of non-fixing phytoplankton. This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1). In this study, we investigate several mechanisms to solve this puzzle: iron limitation, phosphorus enhancement by preferential remineralization or stoichiometric diversity of phytoplankton, and dissolved organic phosphorus (DOP) utilization. Combining resource competition theory and a global coupled ecosystem-circulation model we find that the additional N and energy investments required for exo-enzymatic break-down of DOP gives N2 fixers a competitive advantage in oligotrophic P-starved regions. Accounting for this mechanism expands the ecological niche of N2-fixers also to regions where the nutrient supply is high in N relative to R, yielding, in our model, a pattern consistent with the observed high N2-fixation rates in the oligotrophic North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 (C6).
    Publication Date: 2018-01-15
    Description: On the basis of integrations of an eddy-permitting coupled physical-biological model of the tropical Pacific we explore changes in the simulated mean circulation as well as its intraseasonal to interannual variability driven by the biologically modulated vertical absorption profiles of solar radiation. Three sensitivity ocean hind-cast experiments, covering the period from 1948 to 2003, are performed. In the first one, simulated chlorophyll affects the attenuation of light in the water column, while in the second experiment, the chlorophyll concentration is kept constant in time by prescribing an empirically derived spatial pattern. The third experiment uses a spatially and temporally constant value for the attenuation depth. The biotically induced differential heating is generated by increased absorption of light in the surface layers, leading to a surface warming and subsurface cooling. The effect is largest in the eastern equatorial Pacific. However, the initial vertical redistribution of heat leads to considerable changes of the near-surface ocean circulation subsequently influencing the near-surface temperature structure. In general, including biophysical coupling improves the model performance in terms of temperature and ocean circulation patterns. In particular, the upwelling in the eastern equatorial Pacific is enhanced, the mixed layer becomes shallower, the warm bias in the eastern Pacific is reduced, and the zonal temperature gradient increases. This leads to stronger La Niña events and an associated increase in the variability of the Niño3 SSTA time series. Furthermore, the eddy kinetic energy (EKE) associated with mesoscale eddies in the eastern equatorial Pacific increases by almost 100% because of enhanced EKE production due to enhanced horizontal and vertical shear of the mean currents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 120 (10). pp. 6653-6668.
    Publication Date: 2018-04-27
    Description: The Baltic Sea is a marginal sea, located in a highly industrialized region in Central Northern Europe. Saltwater inflows from the North Sea and associated ventilation of the deep exert crucial control on the entire Baltic Sea ecosystem. This study explores the impact of anticipated sea level changes on the dynamics of those inflows. We use a numerical oceanic general circulation model covering both the Baltic and the North Sea. The model successfully retraces the essential ventilation dynamics throughout the period 1961–2007. A suite of idealized experiments suggests that rising sea level is associated with intensified ventilation as saltwater inflows become stronger, longer, and more frequent. Expressed quantitatively as a salinity increase in the deep central Baltic Sea, we find that a sea level rise of 1 m triggers a saltening of more than 1 PSU. This substantial increase in ventilation is the consequence of the increasing cross section in the Danish Straits amplified by a reduction of vertical mixing
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 111 . pp. 50-60.
    Publication Date: 2020-08-05
    Description: Highlights: • Strong longitudinal variability occurs in the North Atlantic subtropical gyre. • Allochthonous supply of semilabile DOP may occur in the western oligotrophic gyre. • Semilabile DON supply does not provide a significant direct N source. Abstract: We combine modelled timescales of ocean circulation with satellite-retrieved and in situ biogeochemical observations collected in spring along 24.5°N in the subtropical North Atlantic. Longitudinal gradients in the distribution of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) and in other biogeochemical parameters are associated with the longitudinal variability in physical forcing and in the eastward increase of the timescale of advective transport. The western (West of 70°W) and eastern (East of 30°W) margins of the subtropical gyre appear influenced by the productive regions of the Gulf Stream and upwelling zones off Africa, respectively. Within the oligotrophic zone between 70 and 31°W, at approximately 46°W there is a change in the nutrient-controlling factors from the western ultra- oligotrophic with barely any seasonal cycle to an eastern oligotrophic environment with a more intense mixed layer dynamics. The allochthonous supply of semilabile-DOP may be important in the western sector of the oligotrophic gyre (approx. 70–46°W) where, together with the combination of shallow mixed layers, almost permanent stratification and high water temperatures create a niche for the growth of diazotrophs, which we detect from space. Turnover estimates exceeding 3 yr suggest that even re- active fractions of DON are unlikely to be a significant N source. In the eastern sector of the oligotrophic gyre (46–31°W), transit timescales longer than 3 years suggest that the allochthonous supply of the semilabile DOP is negligible due to its exhaustion. Here, an intense mixed layer dynamics favours nu- trient supply from below the mixed layer. We speculate that longitudinal variability in physical forcing and gradients in the timescale of advection, combined with distinct turnover timescales of reactive fractions of DON and DOP, drive diverse phytoplankton assemblages and surface nitrogen fixation gra- dients across our region of investigation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (2). pp. 728-734.
    Publication Date: 2019-09-23
    Description: A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the southern hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21st century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-06
    Description: In the literature, an inconsistency exists between estimates of biotically-effected carbon export inferred from large-scale geochemical studies (Jenkins 1982; 47 gC m−2 a−1) and local measurements of turbulent nutrient supply (Lewis et al. 1986; 4 gC m−2 a−1) in the eastern subtropical North Atlantic. Nutrient supply to the upper ocean by turbulent mixing is reexamined using local standard oceanographic measurements and high-resolution vertical profiles of nutrients averaged over a large region directly comparable to that investigated by Jenkins (1982).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-06
    Description: Apparent oxygen utilisation is potentially biased by abiotic, physical processes. Using a coupled 3-D circulation-oxygen model, this potential is quantitatively estimated for a region in the eastern subtropical North Atlantic, called the Beta Triangle, where an inconsistency exists between observational estimates of high carbon export from the euphotic zone, based on oxygen utilisation rates in the thermocline (Jenkins 1982), and those of low nutrient supply to the euphotic zone (Lewis et al. 1986, 2004). Our results indicate that in the upper ocean, the Jenkins (1982) estimate is indeed biased high by approximately 10% due to abiotic processes feigning respiration, thus contributing to the apparent inconsistency. Vertical integration, however, yields an abiotic fraction of less than 3%, so the apparent observational discrepancy can not be resolved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Surface ocean iron (Fe) fertilization can affect the marine primary productivity (MPP), thereby impacting on CO2 exchanges at the atmosphere-ocean interface and eventually on climate. Mineral (aeolian or desert) dust is known to be a major atmospheric source for the surface ocean biogeochemical iron cycle, but the significance of volcanic ash is poorly constrained. We present the results of geochemical experiments aimed at determining the rapid release of Fe upon contact of pristine volcanic ash with seawater, mimicking their dry deposition into the surface ocean. Our data show that volcanic ash from both subduction zone and hot spot volcanoes (n = 44 samples) rapidly mobilized significant amounts of soluble Fe into seawater (35–340 nmol/g ash), with a suggested global mean of 200 ± 50 nmol Fe/g ash. These values are comparable to the range for desert dust in experiments at seawater pH (10–125 nmol Fe/g dust) presented in the literature (Guieu et al., 1996; Spokes et al., 1996). Combining our new Fe release data with the calculated ash flux from a selected major eruption into the ocean as a case study demonstrates that single volcanic eruptions have the potential to significantly increase the surface ocean Fe concentration within an ash fallout area. We also constrain the long-term (millennial-scale) airborne volcanic ash and mineral dust Fe flux into the Pacific Ocean by merging the Fe release data with geological flux estimates. These show that the input of volcanic ash into the Pacific Ocean (128–221 × 1015 g/ka) is within the same order of magnitude as the mineral dust input (39–519 × 1015 g/ka) (Mahowald et al., 2005). From the similarity in both Fe release and particle flux follows that the flux of soluble Fe related to the dry deposition of volcanic ash (3–75 × 109 mol/ka) is comparable to that of mineral dust (1–65 × 109 mol/ka). Our study therefore suggests that airborne volcanic ash is an important but hitherto underestimated atmospheric source for the Pacific surface ocean biogeochemical iron cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...