GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Iron (Fe), cobalt (Co), and vitamin B12 addition experiments were performed in the eastern Equatorial Pacific/Peruvian upwelling zone during the 2015 El Niño event. Near the Peruvian coastline, apparent photosystem II photochemical efficiencies (Fv/Fm) were unchanged by nutrient addition and chlorophyll‐a tripled in untreated controls over two days, indicating nutrient replete conditions. Conversely, Fe amendment further away from the coastline in the high nitrate, low Fe zone significantly increased Fv/Fm and chlorophyll‐a concentrations. Mean chlorophyll‐a was further enhanced following supply of Fe+Co and Fe+B12 relative to Fe alone, but this was not statistically significant; further offshore, reported Co depletion relative to Fe could enhance responses. The persistence of Fe limitation in this system under a developing El Niño, as previously demonstrated under non‐El Niño conditions, suggests that diminished upwelled Fe is likely an important factor driving reductions in offshore phytoplankton productivity during these events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Arctic Ocean receives a large supply of dissolved organic matter (DOM) from its catchment and shelf sediments, which can be traced across much of the basin’s upper waters. This signature can potentially be used as a tracer. On the shelf, the combination of river discharge and sea-ice formation, modifies water densities and mixing considerably. These waters are a source of the halocline layer that covers much of the Arctic Ocean, but also contain elevated levels of DOM. Here we demonstrate how this can be used as a supplementary tracer and contribute to evaluating ocean circulation in the Arctic. A fraction of the organic compounds that DOM consists of fluoresce and can be measured using in-situ fluorometers. When deployed on autonomous platforms these provide high temporal and spatial resolution measurements over long periods. The results of an analysis of data derived from several Ice Tethered Profilers (ITPs) offer a unique spatial coverage of the distribution of DOM in the surface 800m below Arctic sea-ice. Water mass analysis using temperature, salinity and DOM fluorescence, can clearly distinguish between the contribution of Siberian terrestrial DOM and marine DOM from the Chukchi shelf to the waters of the halocline. The findings offer a new approach to trace the distribution of Pacific waters and its export from the Arctic Ocean. Our results indicate the potential to extend the approach to separate freshwater contributions from, sea-ice melt, riverine discharge and the Pacific Ocean. Key Points: Arctic surface waters with comparable temperature and salinity have contrasting in situ dissolved organic matter fluorescence. Organic matter fluorescence can tracklow salinity waters feeding into the Transpolar Drift and haloclinelayers. Siberian and Chukchishelf waters can be separated based on their fluorescence to salinity relationship
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-14
    Description: The composition and abundance of algal pigments provide information on characteristics of a phytoplankton community in respect to its photoacclimation, overall biomass, and taxonomic composition. Particularly, these pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by High Performance Liquid Chromatography (HPLC) techniques to filtered water samples. This method, like others when water samples have to be analysed in the laboratory, is time consuming and therefore only a limited number of data points can be obtained. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an Empirical Orthogonal Function (EOF) analysis to remote sensing reflectance data derived from ship-based hyper-spectral underwater radiometric and from multispectral satellite data (using the MERIS Polymer product developed by Steinmetz et al., 2011) measured in the Eastern Tropical Atlantic. Subsequently we developed statistically linear models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results, show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multi-spectral resolution is chosen (i.e. eight bands similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. The fitted statistical model constructed on the satellite reflectance data as input was applied to one month of MERIS Polymer data to predict the concentration of those pigment groups for the whole Eastern Tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., 〈 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photo-physiology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-03
    Description: Phytoplankton in the ocean are extremely diverse. The abundance of various intracellular pigments are often used to study phytoplankton physiology and ecology, and identify and quantify different phytoplankton groups. In this study, phytoplankton absorption spectra (aph(λ)) derived from underway flow-through AC-S measurements in the Fram Strait are combined with phytoplankton pigment measurements analyzed by high-performance liquid chromatography (HPLC) to evaluate the retrieval of various pigment concentrations at high spatial resolution. The performances of two approaches, Gaussian decomposition and the matrix inversion technique are investigated and compared. Our study is the first to apply the matrix inversion technique to underway spectrophotometry data. We find that Gaussian decomposition provides good estimates (median absolute percentage error, MPE 21–34%) of total chlorophyll-a (TChl-a), total chlorophyll-b (TChl-b), the combination of chlorophyll-c1 and -c2 (Chl-c1/2), photoprotective (PPC) and photosynthetic carotenoids (PSC). This method outperformed one of the matrix inversion algorithms, i.e., singular value decomposition combined with non-negative least squares (SVD-NNLS), in retrieving TChl-b, Chl-c1/2, PSC, and PPC. However, SVD-NNLS enables robust retrievals of specific carotenoids (MPE 37–65%), i.e., fucoxanthin, diadinoxanthin and 19′-hexanoyloxyfucoxanthin, which is currently not accomplished by Gaussian decomposition. More robust predictions are obtained using the Gaussian decomposition method when the observed aph(λ) is normalized by the package effect index at 675 nm. The latter is determined as a function of “packaged” aph(675) and TChl-a concentration, which shows potential for improving pigment retrieval accuracy by the combined use of aph(λ) and TChl-a concentration data. To generate robust estimation statistics for the matrix inversion technique, we combine leave-one-out cross-validation with data perturbations. We find that both approaches provide useful information on pigment distributions, and hence, phytoplankton community composition indicators, at a spatial resolution much finer than that can be achieved with discrete samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-06
    Description: A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs indicating that phytoplankton may be an important source for marine OVOCs in the South China and Sulu Seas. Humic and protein like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The atmospheric OVOC mixing ratios were relative high compared with literature values, suggesting the coastal region of North Borneo as a local hot spot for atmospheric OVOCs. The flux of atmospheric OVOCs was largely into the ocean for all 5 gases, with a few important exceptions near the coast of Borneo. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the local measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-28
    Description: An intercomparison of radiance and irradiance ocean color radiometers (the second laboratory comparison exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: (1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; (2) indoor, laboratory intercomparison using stable radiance and irradiance sources in a controlled environment; (3) outdoor, field intercomparison of natural radiation sources over a natural water surface. The aim of the experiment was to provide a link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether di�erent instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the third phase of LCE-2: The results of the field experiment. The calibration of radiometers and laboratory comparison experiment are presented in a related paper of the same journal issue. Compared to the laboratory comparison, the field intercomparison has demonstrated substantially larger variability between freshly calibrated sensors, because the targets and environmental conditions during radiometric calibration were di�erent, both spectrally and spatially. Major di�erences were found for radiance sensors measuring a sunlit water target at viewing zenith angle of 139� because of the di�erent fields of view. Major di�erences were found for irradiance sensors because of imperfect cosine response of di�users. Variability between individual radiometers did depend significantly also on the type of the sensor and on the specific measurement target. Uniform SI traceable radiometric calibration ensuring fairly good consistency for indoor, laboratory measurements is insu�cient for outdoor, field measurements, mainly due to the di�erent angular variability of illumination. More stringent specifications and individual testing of radiometers for all relevant systematic e�ects (temperature, nonlinearity, spectral stray light, etc.) are needed to reduce biases between instruments and better quantify measurement uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-28
    Description: An intercomparison of radiance and irradiance ocean color radiometers (The Second Laboratory Comparison Exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: 1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; 2) Indoor intercomparison using stable radiance and irradiance sources in controlled environment; and 3) Outdoor intercomparison of natural radiation sources over terrestrial water surface. The aim of the experiment was to provide one link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether di�erent instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the activities and results of the first two phases of LCE-2: the SI-traceable radiometric calibration and indoor intercomparison, the results of outdoor experiment are presented in a related paper of the same journal issue. The indoor experiment of the LCE-2 has proven that uniform calibration just before the use of radiometers is highly e�ective. Distinct radiometers from di�erent manufacturers operated by di�erent scientists can yield quite close radiance and irradiance results (standard deviation s 〈 1%) under defined conditions. This holds when measuring stable lamp-based targets under stationary laboratory conditions with all the radiometers uniformly calibrated against the same standards just prior to the experiment. In addition, some unification of measurement and data processing must be settled. Uncertaint of radiance and irradiance measurement under these conditions largely consists of the sensor’s calibration uncertainty and of the spread of results obtained by individual sensors measuring the same object.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-25
    Description: Organic ligands such as exopolymeric substances (EPS) are known to form complexes with iron (Fe) and modulate phytoplankton growth. However, the effect of organic ligands on bacterial and viral communities remains largely unknown. Here, we assessed how Fe associated with organic ligands influences phytoplankton, microbial, and viral abundances and their diversity in the Southern Ocean. While the particulate organic carbon (POC) was modulated by Fe chemistry and bioavailability in the Drake Passage, the abundance and diversity of microbes and viruses were not governed by Fe bioavailability. Only following amendments with bacterial EPS did bacterial abundances increase, while phenotypic alpha diversity of bacterial and viral communities decreased. The latter was accompanied by significantly enhanced POC, pointing toward the relief of C limitation or other drivers of the microbial loop. Based on the literature and our findings, we propose a conceptual framework by which EPS may affect phytoplankton, bacteria, and viruses. Given the importance of the Southern Ocean for Earth’s climate as well as the prevalence of viruses and their increasingly recognized impact on marine biogeochemistry and C cycling; the role of microbe–virus interactions on primary productivity in the Southern Ocean needs urgent attention.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    MDPI
    In:  EPIC3Remote Sensing, MDPI, 8(871), pp. 1-21, ISSN: ISSN 2072-4292
    Publication Date: 2016-11-08
    Description: Studying phytoplankton functional types (PFTs) from space is possible due to recent advances in remote sensing. Though a variety of products are available, the limited number of wavelengths available compared to the number of model parameters needed to be retrieved is still a major problem in using ocean-color data for PFT retrievals. Here, we investigated which band placement could improve retrievals of three particular PFTs (diatoms, coccolithophores and cyanobacteria). In addition to analyzing dominant spectral features in the absorption spectra of the target PFTs, two previously-developed methods using measured spectra were applied to simulated data. Such a synthetic dataset allowed for significantly increasing the number of scenarios and enabled a full control over parameters causing spectral changes. We evaluated the chosen band placement by applying an adapted ocean reflectance inversion, as utilized in the generalized inherent optical properties (GIOP) retrieval. Results show that the optimal band settings depend on the method applied to determine the bands placement, as well as on the internal variability of the dataset investigated. Therefore, continuous hyperspectral instruments would be most beneficial for discriminating multiple PFTs, though a small improvement in spectral sampling and resolution does not significantly modify the results. Bands, which could be added to future instruments (e.g., Ocean and Land Colour Instrument (OLCI) instrument on the upcoming Sentinel-3B,-3C,-3D, etc., and further satellites) in order to enhance PFT retrieval capabilities, were also determined.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years, from 2003 to 2010, of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to 5 monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time-series, were compared to related satellite products, including the total surface phytoplankton, i.e., total chlorophyll-a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The 10 inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind speed, which are known to affect phytoplankton dynamics. For each region the anomalies and linear trends of the monitored parameters over the period of this 15 study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophores chlorophyll-a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass’ dynamics to the compared geophysical variables. This suggests, that PhytoDOAS 20 is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time-series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...