GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (49)
  • Springer  (7)
  • Oxford Univ. Press  (4)
  • Blackwell Publishing Ltd  (2)
Document type
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 124 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Seismic refraction velocity data from the acoustic basement (called layer 2A) have been compiled for different mid-ocean ridges. The data from post-1970 studies show a strong correlation between velocity and basement age. Importantly, velocities double in less than 10 Myr for all ridges, but for older crust, up to 160 Myr in age, velocities do not increase significantly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 126 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Upper-mantle structure of Indian Ocean spreading ridges was investigated by track segments of Geosat/ERM altimeter measurements. To determine the upper-mantle structure of the Earth's gravity field, a low-degree and -order spherical harmonic representation of the geoid was removed. A test of several reference fields suggested that a degree 2–25 field with gradually rolled off coefficients (Sandwell & Renkin 1988) offers an adequate representation of the long-wavelength geoidal undulations.Filtered profiles of three individual ridge segments display a strong asymmetry in geoid versus age trends of conjugated rift flanks. The unusually low geoid slopes on one flank can perhaps best be explained as a dynamic or thermal phenomenon reflecting a flow connection between a neighbouring off-axis hotspot plume and the ridge axis, while the other flank simply cools as it spreads away from the axial zone. It seems reasonable to hypothesize that the Southwest Indian Ridge and the Southeast Indian Ridge act as sinks for plumes beneath Agulhas Plateau and Kerguelen Islands, respectively. The Carlsberg Ridge data suggest that the Réunion hotspot contaminated northwestern African lithosphere until 15 Ma. Moreover, symmetric flattening of geoid versus age trends of conjugated ridge flanks offers evidence that plume events affect geoid versus age trends
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 19 (1997), S. 1-23 
    ISSN: 1573-0581
    Keywords: Extinct spreading axis ; oceanic crust ; seismic refraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Two seismic refraction and gravity lines were obtained along and normal to the axis of the Aegir Rift, an extinct spreading centre in the Norway Basin. Velocity-depth solutions and crustal structure models are derived from ocean-bottom records using two-dimensional ray tracing and synthetic seismogram modelling techniques. Gravity data are used to generate models consistent with the lateral variations in thickness of the layers in the crustal models. The resulting models require considerable degree of lateral inhomogeneity along and perpendicular to the rift axis. Crust within the extinct spreading centre is found to be thinner and of low P-wave velocity when compared with the crust sampled off-axis. To explain reduced velocities of the lower crust we suggest that, due to the relationship between fracturing and seismic velocity, the decreasing spreading rate leading up to extinction let the mechanically strong layer thicken, so that faulting and fracturing extended to greater depths . Low velocities are also observed in the uppermost mantle underlying the extinct spreading ridge. This zone is attributed to hydrothermal alteration of upper mantle peridotites. Furthermore, after spreading ceased 32-26 my ago, ongoing passive hydrothermal circulation was accompanied by the precipitation of alteration products in open void spaces, thereby decreasing the porosity and increasing the velocity. Consequently the typical low velocities of layer 2 found at active mid-ocean ridges have been replaced by values typical of mature oceanic crust.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 18 (6). pp. 2149-2161.
    Publication Date: 2020-02-06
    Description: We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5–2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 45 (20). pp. 11050-11058.
    Publication Date: 2021-02-08
    Description: Ahyi is a fully submerged arc volcano in the Northern Mariana Islands, northwestern Pacific Ocean. In April and May 2014, the volcano erupted over a period of 15 days. Results from direction-of-arrival calculations show that underwater sound phases associated with the episode were recorded as far as Wake Island, where a hydrophone triplet array is operated as part of the International Monitoring System. After a 3.5-hr-long sequence of hydroacoustic precursory events, explosive volcanic activity occurred in two distinct, several-days-long bursts, accompanied by a notable decrease in low-frequency arrivals that may indicate a shift in signal source parameters. Acoustic resolution of the hydrophone data supersedes broadband networks by almost 1 order of magnitude, successfully identifying seismic events at Ahyi as low as 2.5 mb. Total radiated acoustic energy of the eruption is estimated at 9.7 1013 J, which suggests that submarine volcanic activity contributed significantly to the ocean soundscape.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  Marine Geophysical Researches, 20 (3). pp. 239-247.
    Publication Date: 2018-02-08
    Description: Bottom shots have been used for a number of years in seismic studies on the ocean floor. Most experiments utilized explosives as the energy source, though researchers have recognized the usefulness of collapsing water voids to produce seismoacoustic signals. Implosive sources, however, suffered generally from a lack of control of source depth. We present a new experimental tool, called SEEBOSEIS, to carry out seismic experiments on the seafloor utilizing hollow glass spheres as controlled implosive sources. The source is a 10-inch BENTHOS float with penetrator. Inside the sphere we place a small explosive charge (two detonators) to destabilize the glass wall. The time of detonation is controlled by an external shooting device. Test measurements on the Ninetyeast Ridge, Indian Ocean, show that the implosive sources can be used in seismic refraction experiments to image the subbottom P- wave velocity structure in detail beyond that possible with traditional marine seismic techniques. Additionally, the implosions permit the efficient generation of dispersed Scholte waves, revealing upper crustal S-wave velocities. The frequency band of seismic energy ranges from less than 1 Hz for Scholte modes up to 1000 Hz for diving P-waves. Therefore, broadband recording units with sampling rates 〉2000 Hz are recommended to sample the entire wave field radiated by implosive sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (4). pp. 1529-1536.
    Publication Date: 2020-11-04
    Description: Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: After more than a decade of multidisciplinary studies of the Central American subduction zone mainly in the framework of two large research programmes, the US MARGINS program and the German Collaborative Research Center SFB 574, we here review and interpret the data pertinent to quantify the cycling of mineral-bound volatiles (H2O, CO2, Cl, S) through this subduction system. For input-flux calculations, we divide the Middle America Trench into four segments differing in convergence rate and slab lithological profiles, use the latest evidence for mantle serpentinization of the Cocos slab approaching the trench, and for the first time explicitly include subduction erosion of forearc basement. Resulting input fluxes are 40–62 (53) Tg/Ma/m H2O, 7.8–11.4 (9.3) Tg/Ma/m CO2, 1.3–1.9 (1.6) Tg/Ma/m Cl, and 1.3–2.1 (1.6) Tg/Ma/m S (bracketed are mean values for entire trench length). Output by cold seeps on the forearc amounts to 0.625–1.25 Tg/Ma/m H2O partly derived from the slab sediments as determined by geochemical analyses of fluids and carbonates. The major volatile output occurs at the Central American volcanic arc that is divided into ten arc segments by dextral strike-slip tectonics. Based on volcanic edifice and widespread tephra volumes as well as calculated parental magma masses needed to form observed evolved compositions, we determine long-term (105 years) average magma and K2O fluxes for each of the ten segments as 32–242 (106) Tg/Ma/m magma and 0.28–2.91 (1.38) Tg/Ma/m K2O (bracketed are mean values for entire Central American volcanic arc length). Volatile/K2O concentration ratios derived from melt inclusion analyses and petrologic modelling then allow to calculate volatile fluxes as 1.02–14.3 (6.2) Tg/Ma/m H2O, 0.02–0.45 (0.17) Tg/Ma/m CO2, and 0.07–0.34 (0.22) Tg/Ma/m Cl. The same approach yields long-term sulfur fluxes of 0.12–1.08 (0.54) Tg/Ma/m while present-day open-vent SO2-flux monitoring yields 0.06–2.37 (0.83) Tg/Ma/m S. Input–output comparisons show that the arc water fluxes only account for up to 40 % of the input even if we include an “invisible” plutonic component constrained by crustal growth. With 20–30 % of the H2O input transferred into the deeper mantle as suggested by petrologic modeling, there remains a deficiency of, say, 30–40 % in the water budget. At least some of this water is transferred into two upper-plate regions of low seismic velocity and electrical resistivity whose sizes vary along arc: one region widely envelopes the melt ascent paths from slab top to arc and the other extends obliquely from the slab below the forearc to below the arc. Whether these reservoirs are transient or steady remains unknown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-28
    Description: We present 2-D seismic velocity models and coincident multichannel seismic reflection images of the overriding plate and the inter-plate boundary of the Nicaragua convergent margin along two wide-angle seismic profiles parallel and normal to the trench acquired in the rupture area of the 1992 tsunami earthquake. The trench-perpendicular profile runs over a seamount subducting under the margin slope, at the location where seismological observations predict large coseismic slip. Along this profile, the igneous basement shows increasing velocity both with depth and away from the trench, reflecting a progressive decrease in upper-plate rock degree of fracturing. Upper mantle-like velocities are obtained at approximate to 10 km depth beneath the fore-arc Sandino basin, indicating a shallow mantle wedge. A mismatch of the inter-plate reflector in the velocity models and along coincident multichannel seismic profiles under the slope is best explained by approximate to 15% velocity anisotropy, probably caused by subvertical open fractures that may be related to fluid paths feeding known seafloor seepage sites. The presence of a shallow, partially serpentinized mantle wedge, and the fracture-related anisotropy are supported by gravity analysis of velocity-derived density models. The downdip limit of inter-plate seismicity occurs near the tip of the inferred mantle wedge, suggesting that seismicity could be controlled by the presence of serpentinite group minerals at the fault gouge. Near the trench, the inferred local increase of normal stress produced by the subducting seamount in the plate boundary may have made this fault segment unstable during earthquake rupture, which could explain its tsunamigenic character.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-27
    Description: Extension of the continental lithosphere leads to the formation of rift basins or rifted continental margins if breakup occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures and different amount of extension and crustal thinning. Here we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β factor of ~1.3–1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively toward the southeast. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on multichannel seismic images. Locally, basalt flows are imaged intruding sediment in this zone, and heat flow values locally exceed 100 mW/m2. Velocities within the entire crust range 4.0–6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic underplating may not be present. The characteristics of the pre-tectonic, syn-tectonic and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick postrift sediments were deposited in half grabens that are bounded by large fault blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show the evolution from the less extended rift in the north with a fairly symmetric conjugate structure to the asymmetric margins farther south. This structural evolution is consistent with W-E rift propagation and southward increasing extension rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...