GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • BioMed Central  (1)
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research - Atmospheres, 120 (11). pp. 5357-5370.
    Publication Date: 2016-12-05
    Description: The East Asian winter monsoon (EAWM) is one of the most active components of the global climate system. Climate anomalies associated with the EAWM differ between extratropical and tropical regions due to the EAWM's meridional extent. Spatial differences in the EAWM variability on centennial and millennial time scales during the Holocene have not been well understood. This study describes Holocene spatiotemporal features of the EAWM based on comparisons of proxy records and climate simulations. The analysis specifically compared four proxy records located throughout China to assess the EAWM's spatial variability during the Holocene. These records indicate a stronger EAWM during the early Holocene than that during the late Holocene. The EAWM also shows a rapid, asynchronous decline from northwestern to southeastern China. The EAWM declined in northwestern China from 10 to 7.5 ka B.P., whereas the decline did not occur in southern China and the eastern Tibetan Plateau until 6–4.5 ka B.P. Coupled equilibrium and transient simulations of climate evolution during the Holocene indicate that the decline of the EAWM from 10 to 7.5 ka B.P. was probably caused by melting of Northern Hemisphere (NH) ice sheets and enhanced Atlantic meridional overturning circulation (AMOC). The decline of the EAWM from 6 to 4.5 ka B.P. over the eastern Tibetan Plateau and southern China is related to an abrupt increase in sea surface temperatures (SSTs) of the tropical western Indian Ocean. We therefore argue that the regional shift in EAWM intensity was probably related to a distinguishing response to high-latitude (NH ice sheets and AMOC) and low-latitude (tropical SSTs) forcings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-18
    Description: MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that potentially play a critical role in tumorigenesis. Increasing evidences indicate that miR-378-5p is dysregulated in numerous human cancers including colorectal cancer (CRC) which hypothesizes that miR-378-5p may play an important role in tumorigenesis. However, its role in CRC carcinogenesis remains poorly defined because of lacking target genes information. In the present study, it was demonstrated that the expression of miR-378-5p was down-regulated in CRC tissues and cell lines as determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Furthermore, overexpression of miR-378-5p suppressed cell proliferation, as indicated by CCK-8 assay. Flow cytometric analysis demonstrated that overexpression of miR-378-5p induced cell cycle arrest and promoted apoptosis in CRC cells. A luciferase reporter assay indicated that BRAF was a direct target of miR-378-5p. Western blot and qRT-PCR analysis indicated that BRAF was significantly down-regulated by miR-378-5p in CRC cells. Moreover, miR-378-5p was negatively associated with BRAF in CRC tissues compared to adjacent non-tumor tissues. These results demonstrate that down-regulation of miR-378-5p promotes CRC cells growth by targeting BRAF and restoration of their levels is a potentially promising therapeutic in CRC.
    Electronic ISSN: 1475-2867
    Topics: Medicine
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...