GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (27)
  • AtlantOS  (15)
  • Oceanography Society  (3)
  • 1
    Publication Date: 2021-02-08
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (3). pp. 2049-2065.
    Publication Date: 2021-05-19
    Description: A submesoscale coherent vortex (SCV) with a low oxygen core is characterized from underwater glider and mooring observations from the eastern tropical North Atlantic, north of the Cape Verde Islands. The eddy crossed the mooring with its center and a 1 month time series of the SCV's hydrographic and upper 100 m currents structure was obtained. About 45 days after, and ∼100 km west, the SCV frontal zone was surveyed in high temporal and spatial resolution using an underwater glider. Satellite altimetry showed the SCV was formed about 7 months before at the Mauritanian coast. The SCV was located at 80-100 m depth, its diameter was ∼100 km and its maximum swirl velocity ∼0.4 m s-1. A Burger number of 0.2 and a vortex Rossby number 0.15 indicate a flat lens in geostrophic balance. Mooring and glider data show in general comparable dynamical and thermohaline structures, the glider in high spatial resolution, the mooring in high temporal resolution. Surface maps of chlorophyll concentration suggest high productivity inside and around the SCV. The low potential vorticity (PV) core of the SCV is surrounded by filamentary structures, sloping down at different angles from the mixed layer base and with typical width of 10-20 km and a vertical extent of 50-100 m.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (15). pp. 7855-7864.
    Publication Date: 2020-02-06
    Description: Measurements of near-surface oxygen (O2) concentrations and mixed layer depth from the K1 mooring in the central Labrador Sea are used to calculate the change in column-integrated (0–1700 m) O2 content over the deep convection winter 2014/2015. During the mixed layer deepening period, November 2014 to April 2015, the oxygen content increased by 24.3 ± 3.4 mol m−2, 40% higher than previous results from winters with weaker convection. By estimating the contribution of respiration and lateral transport on the oxygen budget, the cumulative air-sea gas exchange is derived. The O2 uptake of 29.1 ± 3.8 mol m−2, driven by persistent undersaturation (≥5%) and strong atmospheric forcing, is substantially higher than predicted by standard (nonbubble) gas exchange parameterizations, whereas most bubble-resolving parameterizations predict higher uptake, comparable to our results. Generally large but varying mixed layer depths and strong heat and momentum fluxes make the Labrador Sea an ideal test bed for process studies aimed at improving gas exchange parameterizations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Deep convection is a key process in the Atlantic Meridional Overturning Circulation, but because it acts at small scales, it remains poorly resolved by climate models. The occurrence of deep convection depends on weak initial stratification and strong surface buoyancy forcing, conditions that are satisfied in only a few ocean basins. In 2014, one of the Ocean Observatories Initiative (OOI) global arrays was installed close to the Central Irminger Sea (CIS) and the Long-term Ocean Circulation Observations (LOCO) moorings in the central Irminger Sea. These programs’ six moorings are located in the center of an area of deep convection and are distributed within a 50 km radius, thus offering detailed insight into spatial differences during the strong convection events that occurred during the winters of 2014/2015 and 2015/2016. Deep mixed layers, down to approximately 1,600 m, formed during both winters. The properties of the convectively renewed water mass at each mooring converge to a common temperature and salinity before restratification sets in at the end of winter. The largest differences in onset (or timing) of convection and restratification are seen between the northernmost and southernmost moorings. High-resolution atmospheric reanalysis data show there is higher atmospheric forcing at the northernmost mooring due to a more favorable position with respect to the Greenland tip jet. Nevertheless, earlier onset, and more continuous cooling and deepening of mixed layers, occurs at the southernmost mooring, while convection at the northern mooring is frequently interrupted by warm events. We propose that these warm events are associated with eddies and filaments originating from the Irminger Current off the coast of Greenland and that convection further south benefits from cold inflow from the southwest.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-21
    Description: Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here, we present the first combined dissolved (DPb), labile (LpPb) and particulate (PPb) Pb dataset from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by 4-fold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (〉2500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to ‘buffer’ the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: A deliberate tracer release experiment in 2008–2010 was used to study diapycnal mixing in the tropical northeastern Atlantic. The tracer (CF3SF5) was injected on the isopycnal surface σΘ = 26.88 kg m−3, which corresponds to about 330 m depth. Three surveys, performed 7, 20, and 30 months after the release, sampled the vertically and laterally expanding tracer patch. The mean diapycnal mixing estimate over the entire region occupied by the tracer and the period of 30 months was found to be (1.19 ± 0.18) × 10−5 m2 s−1, or, alternatively, (3.07 ± 0.58) × 10−11 (kg m−3)2 s−1 as computed from the advection-diffusion equation in isopycnal coordinates with the thickness-weighted averaging. The latter method is preferable in the regions of different stratification for it yields local diapycnal mixing estimates varying less with stratification than their Cartesian coordinate counterparts. Results of this study are comparable to the results of the North Atlantic tracer release experiment (NATRE). However, the internal wave-wave interaction models predict reduced mixing from the breaking of internal waves at low latitudes. Thus, the diapycnal diffusivity found in this study is higher than parameterized by the low latitude of the site (4°N–12°N).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-19
    Description: The mixed layer (ML) temperature and salinity changes in the central tropical Atlantic have been studied by a dedicated experiment (Cold Tongue Experiment (CTE)) carried out from May to July 2011. The CTE was based on two successive research cruises, a glider swarm, and moored observations. The acquired in situ data sets together with satellite, reanalysis, and assimilation model data were used to evaluate box-averaged ML heat and salinity budgets for two subregions: (1) the western equatorial Atlantic cold tongue (ACT) (23°–10°W) and (2) the region north of the ACT. The strong ML heat loss in the ACT region during the CTE was found to be the result of the balance of warming due to net surface heat flux and cooling due to zonal advection and diapycnal mixing. The northern region was characterized by weak cooling and the dominant balance of net surface heat flux and zonal advection. A strong salinity increase occurred at the equator, 10°W, just before the CTE. During the CTE, ML salinity in the ACT region slightly increased. Largest contributions to the ML salinity budget were zonal advection and the net surface freshwater flux. While essential for the ML heat budget in the ACT region, diapycnal mixing played only a minor role for the ML salinity budget. In the region north of the ACT, the ML freshened at the beginning of the CTE due to precipitation, followed by a weak salinity increase. Zonal advection changed sign contributing to ML freshening at the beginning of the CTE and salinity increase afterward.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Since 2010, an intense effort in the collection of in situ observations has been carried out in the northwestern Mediterranean Sea thanks to gliders, profiling floats, regular cruises, and mooring lines. This integrated observing system enabled a year-to-year monitoring of the deep waters formation that occurred in the Gulf of Lions area during four consecutive winters (2010–2013). Vortical structures remnant of wintertime deep vertical mixing events were regularly sampled by the different observing platforms. These are Submesoscale Coherent Vortices (SCVs) characterized by a small radius (∼5–8 km), strong depth-intensified orbital velocities (∼10–20 cm s−1) with often a weak surface signature, high Rossby (∼0.5) and Burger numbers O(0.5–1). Anticyclones transport convected waters resulting from intermediate (∼300 m) to deep (∼2000 m) vertical mixing. Cyclones are characterized by a 500–1000 m thick layer of weakly stratified deep waters (or bottom waters that cascaded from the shelf of the Gulf of Lions in 2012) extending down to the bottom of the ocean at ∼2500 m. The formation of cyclonic eddies seems to be favored by bottom-reaching convection occurring during the study period or cascading events reaching the abyssal plain. We confirm the prominent role of anticyclonic SCVs and shed light on the important role of cyclonic SCVs in the spreading of a significant amount (∼30%) of the newly formed deep waters away from the winter mixing areas. Since they can survive until the following winter, they can potentially have a great impact on the mixed layer deepening through a local preconditioning effect.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, 101 . pp. 1-8.
    Publication Date: 2021-01-08
    Description: Ocean experts are engaged in a long-term effort to envision, develop, and implement best practices for meeting today’s needs while preserving ocean resources for future generations
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: There is an incomplete description of the mid-depth circulation and its link to the oxygen minimum zone (OMZ) in the eastern tropical South Pacific. Subsurface currents of the OMZ in the eastern tropical South Pacific are investigated with a focus at 400 m depth, close to the core of the OMZ, using several Acoustic Doppler Current Profiler sections recorded in January and February 2009. Five profiling floats with oxygen sensors were deployed along 85°50’W in February 2009 with a drift depth at 400 m. Their spreading paths are compared with the model flow field from a 1/10° Tropical Pacific model (TROPAC01) and the Simple Ocean Data Assimilation (SODA) model. Overall the mean currents in the eastern tropical South Pacific are weak so that eddy variability influences the flow and ultimately feed oxygen-poor water to the OMZ. The center of the OMZ is a stagnant area so that floats stay much longer in this region and can even reverse direction. In one case of one float deployed at 8°S returned to the same location after 15 month. On the northern side of the OMZ in the equatorial current system, floats move rapidly to the west. Most current bands reported for the near surface layer exist also in the depth range of the OMZ. A schematic circulation flow field for the OMZ core depth is derived which shows the northern part of the South Pacific subtropical gyre south of the OMZ and the complicated zonal equatorial flow field north of the OMZ.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...