GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (3)
  • AGU (American Geophysical Union)  (2)
  • ELSEVIER SCIENCE BV  (1)
Document type
Publisher
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: First physics results are presented from MAST (Mega-Amp Spherical Tokamak), one of the new generation of purpose built spherical tokamaks (STs) now commencing operation. Some of these results demonstrate, for the first time, the novel effects of low aspect ratio, for example, the enhancement of resistivity due to neo-classical effects. H-mode is achieved and the transition to H-mode is accompanied by a tenfold steepening of the edge density gradient which may enable the successful application of electron Bernstein wave heating in STs. Studies of halo currents show that these less than expected from conventional tokamak results, and measurements of divertor power loading confirm that most of the power flows to the outer strike points, easing the power handling on the inner points (a critical issue for STs). © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The ideal magnetohydrodynamic (MHD) stability of the tokamak edge is analyzed, with particular emphasis on radially localized instabilities; it is proposed that these are responsible for edge pressure gradient limits and edge localized modes (ELMS). Data and stability calculations from DIII-D [to appear in Proceedings of the 16th International Conference on Fusion Energy, Yokohama (International Atomic Energy Agency, Vienna, 1998), Paper No. IAEA-F1-CN-69/EX8/1] tokamak equilibria indicate that two types of instability are important: the ballooning mode (driven by pressure gradient) and the peeling mode (driven by current density). The characteristics of these instabilities, and their coupling, are described based on a circular cross-section, large aspect ratio model of the tokamak equilibrium. In addition, preliminary results are presented from an edge MHD stability code which is being developed to analyze general geometry tokamak equilibria; an interpretation of the density threshold to access the high-confinement-mode (H-mode), observed on COMPASS-D [Plasma Phys. Controlled Fusion 38, 1091 (1996)] is provided by these results. Experiments on DIII-D and the stability calculations indicate how to control ELMs by plasma shaping.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Low-aspect-ratio tokamaks offer both the economic advantage of smaller size and a number of physics advantages which are not available at conventional aspect ratio. The Small Tight Aspect Ratio Tokamak (START) [Fusion Technology 1990, edited by B. E. Keen, M. Huguet, and R. Hemsworth (North-Holland, Amsterdam, 1991), Vol. 1, p. 353] was conceived as a first substantial test of tokamak plasma behavior at low aspect ratio. It has achieved plasma currents up to 200 kA, peak densities of ∼2×1020 m−3 and central electron temperatures of ∼500 eV at an aspect ratio of 1.3–1.5. Central beta values of ∼13% have been measured and the volume-averaged beta 〈β〉 can approach the Troyon limit. Plasmas are naturally elongated (κ(approximately-less-than)2.0) and are vertically stable without feedback control. Major disruptions have not been observed at low aspect ratios (A≤2.0).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan-Gough hotspot at the Mid-Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi-linear polarity zones crossing the plateau and following expected MAR paleo-locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n-C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading-type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano. Key Points - Valdivia Bank is characterized by quasi-linear magnetic anomalies that are parallel to the inferred paleo-Mid-Atlantic Ridge - Magnetic anomalies imply that the plateau becomes younger E-W consistent with formation via seafloor spreading during anomalies C34n-C33r - Rift valleys, division of C33r, and anomaly curvature imply complex ridge tectonics and a ridge jump
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-23
    Description: The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM 60–65 , (Ti 0.60–0.65 Fe 0.35–0.40 )Fe 2 O 4 ). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples. Plain Language Summary Oceanic basalts are ideal recorders of the Earth's magnetic field. To decipher magnetic histories recorded in rocks, paleomagnetists need to isolate the magnetization directions and intensities within rocks by one of two possible methods. One method typically involves progressively heating the samples to high temperatures. The other method involves exposing samples to alternating magnetic fields with increasing peak field intensities. Both of these methods are ultimately destructive to the original magnetization preserved within rocks. However, without knowledge of a given rock's magnetic mineralogy, randomly choosing thermal or alternating field demagnetization methods may result in high failure rates. We developed a pre‐screening method to help decide which cleaning method will likely be more successful for a given sample based on low‐field magnetic susceptibility measurements. These measurements do not affect the original magnetic information recorded in a rock, thereby permitting subsequent paleomagnetic studies on the same sample. Our technique can be performed as rapidly as 2 min per sample, is non‐destructive, and does not require complicated sample preparation. Key Points Paleomagnetic studies utilize either alternating field or thermal demagnetization, but it is difficult to choose the best protocol a priori Amplitude‐dependence of magnetic susceptibility measurements permits preliminary magnetic mineralogy characterization in submarine basalts Rapid amplitude‐dependence measurements may aid in deciding upon the best demagnetization protocol for submarine basalt samples
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-06
    Description: Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator–prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds.Wec onsider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region—the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...