GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 111 . C06024.
    Publication Date: 2018-04-19
    Description: Surface seawater pCO2 and related parameters were measured at high frequency onboard the volunteer observing ship M/V Falstaff in the North Atlantic Ocean between 36° and 52°N. Over 90,000 data points were used to produce monthly CO2 fluxes for 2002/2003. The air-sea CO2 fluxes calculated by two different averaging schemes were compared. The first approach used gas transfer velocity determined from wind speed retrieved at the location of the ship and called colocated winds, while for the second approach a monthly averaged gas transfer velocity was calculated from the wind for each grid pixel including the variability in wind. The colocated wind speeds determined during the time of passage do not capture the monthly wind speed variability of the grid resulting in fluxes that were 47% lower than fluxes using the monthly averaged wind products. The Falstaff CO2 fluxes were in good agreement with a climatology using averaged winds. Over the entire region they differed by 2–5%, depending on the time-dependent correction scheme to account for the atmospheric in increase in pCO2. However, locally the flux differences between the ship measurements and the climatology were greater, especially in regions north of 45°N, like the eastern sector. A comparison of two wind speed products showed that the annual CO2 sink is 4% less when using 6 hourly NCEP/NCAR wind speeds compared to the QuikSCAT wind speed data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html. Key Points: - This study presents the evolution of 10 ocean acidification (OA) indicators in the global surface ocean from 1750 to 2100 - By leveraging 14 Earth System Models (ESMs) and the latest observational data, it represents a significant advancement in OA projections - This inter-model comparison effort showcases the overall agreements among different ESMs in projecting surface ocean carbon variables
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985-2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is -1.6 +/- 0.2 PgC yr(-1) based on an ensemble of reconstructions of the history of sea surface pCO(2) (pCO(2) products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at -2.1 +/- 0.3 PgC yr(-1) by an ensemble of ocean biogeochemical models, and -2.4 +/- 0.1 PgC yr(-1) by two ocean circulation inverse models. The ocean also degasses about 0.65 +/- 0.3 PgC yr(-1) of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of -0.61 +/- 0.12 PgC yr(-1) decade(-1), while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of -0.34 +/- 0.06 and -0.41 +/- 0.03 PgC yr(-1) decade(-1), respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2-3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03019, doi:10.1029/2007JC004153.
    Description: Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
    Description: We would like to acknowledge funding from NSF (OCE02-23869), NCAR, the WHOI Ocean Climate Institute, a Linden Earth Systems Graduate Fellowship (MIT), and a National Defense Science and Engineering Graduate Fellowship. NCAR is sponsored by the National Science Foundation. R.W. is supported by the Office of Oceanic and Atmospheric Research at NOAA.
    Keywords: Carbon dioxide ; Ocean carbon sink ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S02, doi:10.1029/2003JC002256.
    Description: GasEx-2001, a 15-day air-sea carbon dioxide (CO2) exchange study conducted in the equatorial Pacific, used a combination of ships, buoys, and drifters equipped with ocean and atmospheric sensors to assess variability and surface mechanisms controlling air-sea CO2 fluxes. Direct covariance and profile method air-sea CO2 fluxes were measured together with the surface ocean and marine boundary layer processes. The study took place in February 2001 near 125°W, 3°S in a region of high CO2. The diurnal variation in the air-sea CO2 difference was 2.5%, driven predominantly by temperature effects on surface solubility. The wind speed was 6.0 ± 1.3 m s−1, and the atmospheric boundary layer was unstable with conditions over the range −1 〈 z/L 〈 0. Diurnal heat fluxes generated daytime surface ocean stratification and subsequent large nighttime buoyancy fluxes. The average CO2 flux from the ocean to the atmosphere was determined to be 3.9 mol m−2 yr−1, with nighttime CO2 fluxes increasing by 40% over daytime values because of a strong nighttime increase in (vertical) convective velocities. The 15 days of air-sea flux measurements taken during GasEx-2001 demonstrate some of the systematic environmental trends of the eastern equatorial Pacific Ocean. The fact that other physical processes, in addition to wind, were observed to control the rate of CO2 transfer from the ocean to the atmosphere indicates that these processes need to be taken into account in local and global biogeochemical models. These local processes can vary on regional and global scales. The GasEx-2001 results show a weak wind dependence but a strong variability in processes governed by the diurnal heating cycle. This implies that any changes in the incident radiation, including atmospheric cloud dynamics, phytoplankton biomass, and surface ocean stratification may have significant feedbacks on the amount and variability of air-sea gas exchange. This is in sharp contrast with previous field studies of air-sea gas exchange, which showed that wind was the dominating forcing function. The results suggest that gas transfer parameterizations that rely solely on wind will be insufficient for regions with low to intermediate winds and strong insolation.
    Description: This work was performed with the support of the National Science Foundation Grant OCE-9986724 and the NOAA Global Carbon Cycle Program Grants NA06GP048, NA17RJ1223, and NA87RJ0445 in the Office of Global Programs.
    Keywords: Air-sea carbon dioxide fluxes ; Equatorial Pacific ; Direct covariance technique ; Profile flux technique ; Diurnal surface layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4027, doi:10.1029/2007GB003167.
    Description: Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical-biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979–2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub-basin scales in response to wind-driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air-sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long-term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long-term changes associated with anthropogenic CO2 uptake and climate change.
    Description: S. C. Doney and I. D. Lima were supported by NASA grant NNG05GG30G.
    Keywords: North Atlantic ; CO2 uptake ; NAO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S11, doi:10.1029/2003JC001831.
    Description: During the two recent GasEx field experiments, direct covariance measurements of air-sea carbon dioxide fluxes were obtained over the open ocean. Concurrently, the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment air-sea gas transfer parameterization was developed to predict gas transfer velocities from measurements of the bulk state of the sea surface and atmosphere. The model output is combined with measurements of the mean air and sea surface carbon dioxide fugacities to provide estimates of the air-sea CO2 flux, and the model is then tuned to the GasEx-1998 data set. Because of differences in the local environment and possibly because of weaknesses in the model, some discrepancies are observed between the predicted fluxes from the GasEx-1998 and GasEx-2001 cases. To provide an estimate of the contribution to the air-sea flux of gas due to wave-breaking processes, the whitecap and bubble parameterizations are removed from the model output. These results show that moderate (approximately 15 m s−1) wind speed breaking wave gas transfer processes account for a fourfold increase in the flux over the modeled interfacial processes.
    Description: This work was supported by the NOAA Office of Global Programs, under the leadership of Dr. Lisa Dilling. WHOI was supported by the National Science Foundation grant OCE-9711218.
    Keywords: Air-sea interaction ; Air-sea flux ; Air-gas transfer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S08, doi:10.1029/2003JC001800.
    Description: The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.
    Description: This material is based upon work supported by the NSF under grant OCE-9986724, and by NOAA/OGP grant GC00-226.
    Keywords: Air-sea CO2 flux ; Warm layer ; Cool skin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835.
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...