GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
Document type
Publisher
  • AGU (American Geophysical Union)  (1)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
  • Springer  (1)
  • Wiley  (1)
Years
  • 1
    Publication Date: 2014-02-05
    Description: Aerosol deposition from the 2010 eruption of the Icelandic volcano Eyjafjallajökull resulted in significant dissolved iron (DFe) inputs to the Iceland Basin of the North Atlantic. Unique ship-board measurements indicated strongly enhanced DFe concentrations (up to 10 nM) immediately under the ash plume. Bioassay experiments performed with ash collected at sea under the plume also demonstrated the potential for associated Fe release to stimulate phytoplankton growth and nutrient drawdown. Combining Fe dissolution measurements with modeled ash deposition suggested that the eruption had the potential to increase DFe by 〉0.2 nM over an area of up to 570,000 km2. Although satellite ocean color data only indicated minor increases in phytoplankton abundance over a relatively constrained area, comparison of in situ nitrate concentrations with historical records suggested that ash deposition may have resulted in enhanced major nutrient drawdown. Our observations thus suggest that the 2010 Eyjafjallajökull eruption resulted in a significant perturbation to the biogeochemistry of the Iceland Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-01
    Description: The high-latitude North Atlantic (HLNA) is characterized by a marked seasonal phytoplankton bloom, which removes the majority of surface macronutrients. However, incomplete nitrate depletion is frequently observed during summer in the region, potentially reflecting the seasonal development of an iron (Fe) limited phytoplankton community. In order to investigate the seasonal development and spatial extent of iron stress in the HLNA, nutrient addition experiments were performed during the spring (May) and late summer (July and August) of 2010. Grow-out experiments (48–120 h) confirmed the potential for iron limitation in the region. Short-term (24 h) incubations further enabled high spatial coverage and mapping of phytoplankton physiological responses to iron addition. The difference in the apparent maximal photochemical yield of photosystem II (PSII) (Fv : Fm) between nutrient (iron) amended and control treatments (D(Fv : Fm)) was used as a measure of the relative degree of iron stress. The combined observations indicated variability in the seasonal cycle of iron stress between different regions of the Irminger and Iceland Basins of the HLNA, related to the timing of the annual bloom cycle in contrasting biogeochemical provinces. Phytoplankton iron stress developed during the transition from the prebloom to peak bloom conditions in the HLNA and was more severe for larger cells. Subsequently, iron stress was reduced in regions where macronutrients were depleted following the bloom. Iron availability plays a significant role in the biogeochemistry of the HLNA, potentially lowering the efficiency of one of the strongest biological carbon pumps in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...