GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (30)
  • Elsevier  (16)
  • AMS (American Meteorological Society)  (12)
  • Nature Research  (2)
  • BMBF / IFM-GEOMAR  (1)
  • 1
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Geoscience, 11 (7). pp. 467-473.
    Publication Date: 2021-02-08
    Description: Direct observations indicate that the global ocean oxygen inventory is decreasing. Climate models consistently confirm this decline and predict continuing and accelerating ocean deoxygenation. However, current models (1) do not reproduce observed patterns for oxygen changes in the ocean’s thermocline; (2) underestimate the temporal variability of oxygen concentrations and air–sea fluxes inferred from time-series observations; and (3) generally simulate only about half the oceanic oxygen loss inferred from observations. We here review current knowledge about the mechanisms and drivers of oxygen changes and their variation with region and depth over the world’s oceans. Warming is considered a major driver: in part directly, via solubility effects, and in part indirectly, via changes in circulation, mixing and oxygen respiration. While solubility effects have been quantified and found to dominate deoxygenation near the surface, a quantitative understanding of contributions from other mechanisms is still lacking. Current models may underestimate deoxygenation because of unresolved transport processes, unaccounted for variations in respiratory oxygen demand, or missing biogeochemical feedbacks. Dedicated observational programmes are required to better constrain biological and physical processes and their representation in models to improve our understanding and predictions of patterns and intensity of future oxygen change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Progress in Oceanography, 26 (1). pp. 1-73.
    Publication Date: 2018-03-02
    Description: In this paper we present a literature survey of the South Atlantic's climate and its oceanic upper-layer circulation and meridional heat transport. The opening section deals with climate and is focused upon those elements having greatest oceanic relevance, i.e., distributions of atmospheric sea level pressure, the wind fields they produce, and the net surface energy fluxes. The various geostrophic currents comprising the upper-level general circulation are then reviewed in a manner organized around the subtropical gyre, beginning off southern Africa with the Agulhas Current Retroflection and then progressing to the Benguela Current, the equatorial current system and circulation in the Angola Basin, the large-scale variability and interannual warmings at low latitudes, the Brazil Current, the South Atlantic Current, and finally to the Antarctic Circumpolar Current system in which the Falkland (Malvinas) Current is included. A summary of estimates of the meridional heat transport at various latitudes in the South Atlantic ends of the survey
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (2). pp. 1068-1083.
    Publication Date: 2019-09-23
    Description: In the tropical eastern South Pacific the Stratus Ocean Reference Station (ORS) (∼20°S, 85.5°W) is located in the transition zone between the oxygen minimum zone (OMZ) and the well-oxygenated subtropical gyre. In February/March 2012, extremely anomalous water mass properties were observed in the thermocline at the Stratus ORS. The available eddy oxygen anomaly was −10.5 × 1016 µmol. This anomalous water was contained in an anticyclonic mode-water eddy crossing the mooring site. This eddy was absorbed at that time by an anticyclonic feature located south of the Stratus mooring. This was the largest water property anomaly observed at the mooring during the 13.5 month deployment period. The sea surface height anomaly (SSHA) of the strong mode-water eddy in February/March 2012 was weak, and while the lowest and highest SSHA were related to weak eddies, SSHA is found not to be sufficient to specify the eddy strength for subsurface-intensified eddies. Still, the anticyclonic eddy, and its related water mass characteristics, could be tracked backward in time in SSHA satellite data to a formation region in April 2011 off the Chilean coast. The resulting mean westward propagation velocity was 5.5 cm s−1. This extremely long-lived eddy carried the water characteristics from the near-coastal Chilean water to the open ocean. The water mass stayed isolated during the 11 month travel time due to high rotational speed of about 20 cm s−1 leading to almost zero oxygen in the subsurface layer of the anticyclonic mode-water eddy with indications of high primary production just below the mixed layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 16 (5). pp. 814-826.
    Publication Date: 2018-04-04
    Description: Simulated transient-tracer distributions (tritium, 3H3, freons) on the isopycnal horizons σ0=26.5 and 26.8 kg m−3 are presented for the East Atlantic, 10° −40°N. Tracer transport is modeled by employing a baroclinic flow field based on empirical data in a kinematic isopycnal advection-diffusion numerical model, in which winter convection is taken as the mechanism of communication with the ocean surface layer, and the isopycnal diffusivity is a free parameter. Diapucnic transport is ignored. The simulations employ time-dependent tracer boundary conditions, which are constructed on the basis of available observations. Simulations are compared to data obtained on a meridional section in 1981 (F/S Meteor, cruise 56/5). Best simulations were obtained by means of a subjective optimization procedure. On both levels, the observed distributions and the best simulated distributions agree well. The fact that the surface boundary conditions and interior distributions of the tracers are distinctly different leads us to the conclusion that our model provides a consistent description of upper main-thermocline ventilation and interior transport Surface-water densities in February are found to represent adequately the winter outcrop boundaries with an uncertainty of about ±300 km across. The required isopycnal diffusivity south of 29°N is 1700 m2 s−1, and 2900 m2 s−1 further north (+70/−40%). Interior transport is found to be predominantly advective. Advective ventilation across 30.5°N east of 33°W amounts to only 12% and 40% for the 26.5 and 26.8 horizons of the total ventilation rates reported by Sarmiento. The North Atlantic/South Atlantic Central Water boundary near 15°N is found to be predominantly determined by advection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: A deliberate tracer release experiment in 2008–2010 was used to study diapycnal mixing in the tropical northeastern Atlantic. The tracer (CF3SF5) was injected on the isopycnal surface σΘ = 26.88 kg m−3, which corresponds to about 330 m depth. Three surveys, performed 7, 20, and 30 months after the release, sampled the vertically and laterally expanding tracer patch. The mean diapycnal mixing estimate over the entire region occupied by the tracer and the period of 30 months was found to be (1.19 ± 0.18) × 10−5 m2 s−1, or, alternatively, (3.07 ± 0.58) × 10−11 (kg m−3)2 s−1 as computed from the advection-diffusion equation in isopycnal coordinates with the thickness-weighted averaging. The latter method is preferable in the regions of different stratification for it yields local diapycnal mixing estimates varying less with stratification than their Cartesian coordinate counterparts. Results of this study are comparable to the results of the North Atlantic tracer release experiment (NATRE). However, the internal wave-wave interaction models predict reduced mixing from the breaking of internal waves at low latitudes. Thus, the diapycnal diffusivity found in this study is higher than parameterized by the low latitude of the site (4°N–12°N).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 93 (C7). pp. 8111-8118.
    Publication Date: 2017-09-26
    Description: The eastern part of the North Atlantic subtropical gyre is found in the region between the Azores and the Cape Verde Islands. A study of the gyre structure in the area east of 35°W between 8°N and 41°N is presented. The geostrophic flow field determined from historical temperature-salinity data sets by objective analysis indicates seasonal variations in shape but no significant changes in the magnitude of volume transports. The eastern part of the gyre has a larger east-west and smaller north-south extension in summer compared with the winter season. The center shifts by about 2° latitude to the south from winter to summer. Long-term temperature time series (6.5 years) from a mooring near the Azores are consistent with these results, showing always a consistent temperature increase at the beginning of the year which is apparently due to the displacement of the northeastern part of the gyre. A comparison between the mean flow fields and fields obtained from individual zonal sections indicates large deviations north and south of the gyre but small deviations within the gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 117 (C11). C11019.
    Publication Date: 2019-09-24
    Description: Observations indicate increasingly large and strong oxygen minimum zones (OMZs) in the tropical Pacific over recent decades. Here we report on oxygen decreases and variability within the eastern equatorial Pacific OMZ. We construct time series from historical and profiling float oxygen data and analyze data from repeat hydrographic sections at 110°W and 85°50′W. Historical data are quite sparse for constructing oxygen time series, but floats with oxygen sensors prove to be good tools to fill measurement gaps in later parts of these time series. In the region just south of the equator a time series over the last 34 years reveals that oxygen decreases from 200 to 700 m at a rate between 0.50 and 0.83 μmol kg−1 yr−1. This strong decrease seems to be related to changes in the Pacific Decadal Oscillation (PDO). Oscillations on shorter time scales (e.g., an El Niño signal in the upper 350 m) are superimposed upon this trend. In the section data, a general trend of decreasing oxygen is present below the surface layer. While velocity differences appear related to oxygen differences in the equatorial channel, there is less correlation elsewhere. Contrasting with long-term trend computations, the trends derived from two repeat sections are obscured by the influence of seasonal and longer-term variability. Multidecadal variability (e.g., PDO) has the strongest influence on long-term trends, while El Niño, isopycnal heave, current variability, seasonal cycles, and temperature changes are less important. Key points: - Oxygen decrease in the Pacific OMZ over the last 34 years in 200-700 m depth - Trends in oxygen and their relation to variability on different timescales - Relation between oxygen and velocity changes in the equatorial channel
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-04
    Description: Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 104 (C9). pp. 20859-20861.
    Publication Date: 2018-04-17
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 36 (1). pp. 64-86.
    Publication Date: 2018-04-11
    Description: Chlorofluorocarbon (component CFC-11) and hydrographic data from 1997, 1999, and 2001 are presented to track the large-scale spreading of the Upper Labrador Sea Water (ULSW) in the subpolar gyre of the North Atlantic Ocean. ULSW is CFC rich and comparatively low in salinity. It is located on top of the denser “classical” Labrador Sea Water (LSW), defined in the density range σΘ = 27.68–27.74 kg m−3. It follows spreading pathways similar to LSW and has entered the eastern North Atlantic. Despite data gaps, the CFC-11 inventories of ULSW in the subpolar North Atlantic (40°–65°N) could be estimated within 11%. The inventory increased from 6.0 ± 0.6 million moles in 1997 to 8.1 ± 0.6 million moles in 1999 and to 9.5 ± 0.6 million moles in 2001. CFC-11 inventory estimates were used to determine ULSW formation rates for different periods. For 1970–97, the mean formation rate resulted in 3.2–3.3 Sv (Sv ≡ 106 m3 s−1). To obtain this estimate, 5.0 million moles of CFC-11 located in 1997 in the ULSW in the subtropical/tropical Atlantic were added to the inventory of the subpolar North Atlantic. An estimate of the mean combined ULSW/LSW formation rate for the same period gave 7.6–8.9 Sv. For the years 1998–99, the ULSW formation rate solely based on the subpolar North Atlantic CFC-11 inventories yielded 6.9–9.2 Sv. At this time, the lack of classical LSW formation was almost compensated for by the strongly pronounced ULSW formation. Indications are presented that the convection area needed in 1998–99 to form this amount of ULSW exceeded the available area in the Labrador Sea. The Irminger Sea might be considered as an additional region favoring ULSW formation. In 2000–01, ULSW formation weakened to 3.3–4.7 Sv. Time series of layer thickness based on historical data indicate that there exists considerable variability of ULSW and classical LSW formation on decadal scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...