GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
  • AGU  (1)
  • American Association for the Advancement of Science (AAAS)  (1)
  • 1
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2019-09-23
    Description: EGU2010-13373 The frequency of volcanic activity varies on a wide rangeof spatial and temporal scales, from 〈1 yr. periodicities in single volcanic systems to periodicities of 106 yrs. in global volcanism. The causes of these periodicities are poorly understood although the long-term global variations are likely linked to plate-tectonic processes. Here we present evidence for temporal changes in eruption frequencies at an intermediate time scale (104 yrs.) using the Pleistocene to recent records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite origin, along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive and the well-preserved tephra records from the ocean floor can be assumed to be representative of how eruption frequencies varied with time. Volcanic activity along the Pacific Ring of Fire evolved through alternating phases of high and low frequency; although there is modulation by local and regional geologic conditions, these variations have a statistically significant periodicity of 43 ka that overlaps with the temporal variation in the obliquity of the Earth’s rotation axis, an orbital parameter that also exerts a strong control on global climate changes. This may suggest that the frequency of volcanic activity is controlled by effects of global climate changes. However, the strongest physical effects of climate change occur at 100 ka periods which are not seen in the volcanic record. We therefore propose that the frequency of volcanic activity is directly influenced by minute changes in the tidal forces induced by the varying obliquity resulting in long-period gravitational disturbances acting on the upper mantle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Distinct differences were observed in geochemical signatures in sediments from two sites drilled in the upper plate of the Costa Rica margin during Integrated Ocean Drilling Program (IODP) Expedition 334. The upper 80 m at Site U1379, located on the outer shelf, show pore water non‐steady state conditions characteristic of a declining methane flux. These contrast with analyses of the upper sediment layers at the middle slope site (U1378) that reflect steady state conditions. Distinct carbonate‐rich horizons up to 11 meters thick were recovered between 63 and 310 meters below seafloor at Site U1379 but were not found at Site U1378. The carbonates and dissolved inorganic carbon from Site U1379 have a depleted carbon stable isotope signal (up to ‐25‰) that indicates anaerobic methane oxidation. This inference is further supported by distinct δ34S‐pyrite and magnetic susceptibility records that reveal fluctuations of the sulfate‐methane transition in response to methane flux variations. Tectonic reconstructions of this margin document a marked subsidence event after arrival of the Cocos Ridge, 2.2 ± 0.2 million years ago (Ma), followed by increased sedimentation rates and uplift. As the seafloor at Site U1379 rose from ~2000 m to the present water depth of ~126 m, the site moved out of the gas hydrate stability zone (GHSZ) at ~1.1 Ma, triggering upward methane advection, methane oxidation, and the onset of massive carbonate formation. Younger carbonate occurrences and the non‐steady state pore profiles at Site U1379 reflect continued episodic venting likely modulated by changes in the underlying methane reservoir.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-18
    Description: Perturbations in stratospheric aerosol due to explosive volcanic eruptions are a primary contributor to natural climate variability. Observations of stratospheric aerosol are available for the past decades, and information from ice cores has been used to derive estimates of stratospheric sulfur injections and aerosol optical depth over the Holocene (approximately 10,000 BP to present) and into the last glacial period, extending back to 60,000 BP. Tephra records of past volcanism, compared to ice cores, are less complete, but extend much further into the past. To support model studies of the potential impacts of explosive volcanism on climate variability over across timescales, we present here an ensemble reconstruction of volcanic stratospheric sulfur injection (VSSI) over the last 130,000 years that is based primarily on terrestrial and marine tephra records. VSSI values are computed as a simple function of eruption magnitude, based on VSSI estimates from ice cores and satellite observations for identified eruptions. To correct for the incompleteness of the tephra record we include stochastically generated synthetic eruptions, assuming a constant background eruption frequency from the ice core Holocene record. While the reconstruction often differs from ice core estimates for specific eruptions due to uncertainties in the data used and reconstruction method, it shows good agreement with an ice core based VSSI reconstruction in terms of millennial-scale cumulative VSSI variations over the Holocene. The PalVol reconstruction provides a new basis to test the contributions of forced vs. unforced natural variability to the spectrum of climate, and the mechanisms leading to abrupt transitions in the palaeoclimate record with low-to-high complexity climate models. The PalVol volcanic forcing reconstruction is available at https://doi.org/10.26050/WDCC/PalVolv1 (Toohey, Schindlbeck-Belo, 2023).
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-04
    Description: Perturbations in stratospheric aerosol due to explosive volcanic eruptions are a primary contributor to natural climate variability. Observations of stratospheric aerosol are available for the past decades, and information from ice cores has been used to derive estimates of stratospheric sulfur injections and aerosol optical depth over the Holocene (approximately 10 000 BP to present) and into the last glacial period, extending back to 60 000 BP. Tephra records of past volcanism, compared to ice cores, are less complete but extend much further into the past. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present here an ensemble reconstruction of volcanic stratospheric sulfur injection (VSSI) over the last 140 000 years that is based primarily on terrestrial and marine tephra records. VSSI values are computed as a simple function of eruption magnitude based on VSSI estimates from ice cores and satellite observations for identified eruptions. To correct for the incompleteness of the tephra record, we include stochastically generated synthetic eruptions assuming a constant background eruption frequency from the ice core Holocene record. While the reconstruction often differs from ice core estimates for specific eruptions due to uncertainties in the data used and reconstruction method, it shows good agreement with an ice-core-based VSSI reconstruction in terms of millennial-scale cumulative VSSI variations over the Holocene. The PalVol reconstruction provides a new basis to test the contributions of forced vs. unforced natural variability to the spectrum of climate and the mechanisms leading to abrupt transitions in the palaeoclimate record with low- to high-complexity climate models. The PalVol volcanic forcing reconstruction is available at https://doi.org/10.26050/WDCC/PalVolv1 (Toohey and Schindlbeck-Belo, 2023).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...