GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-13
    Description: We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0–99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S 〈 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid–seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Detailed geochemical and mineralogical insights into some of the richest rare earth elements and yttrium (REY)-containing bioapatites from ocean-floor sediments have been provided by combining laser ablation inductively coupled plasma diffraction analysis, and Ce L3-edge high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy. Bioapatites at 1.94 and 4.70 m below the seafloor (mbsf) of the Clarion-Clipperton Zone (CCZ) of the Pacific Ocean have 26,600 (RSD = 15.7%, n = 20) and 30,300 (RSD = 14.6%, n = 10) mg/kg (mg/kg) total REY, respectively, and bioapatites at 2.28 and 6.95 mbsf of the Peru Basin have 15,500 (RSD = 15.6%, n = 20) and 15,700 (RSD = 17.8%, n = 29) mg/kg total REY, respectively. All bioapatite specimens have a variety of isomorphic substitutions in all atomic positions of the crystallographic structure. The average crystallochemical formula of bioapatites at 6.95 mbsf of the Peru Basin is [(PO4)2.71(SiO4)0.04(CO3,SO4)0.25][Ca4.57Na0.29Y0.04][F0.87Cl0.21]. All other substituents are below 0.04 atoms per formula unit. HR-XANES provides the first direct evidence for trivalent Ce in sediment apatites. The strong negative geochemical anomaly of Ce in fossil bioapatites is well explained by the occurrence of four valent Ce-MnO2 and CeO2 within the sediment and in seafloor ferromanganese nodules.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...