GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AAAS (American Association for the Advancement of Science)  (1)
  • ACS (American Chemical Society)  (1)
  • Blackwell  (1)
  • 1
    Publication Date: 2023-03-22
    Description: Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane (∼2.6 μM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Dissolved organic matter (DOM) is a distinct component of Earth’s hydrosphere and provides a link between the biogeochemical cycles of carbon, nutrients, and trace metals (TMs). Binding of TMs to DOM is thought to result in a TM pool with DOM-like biogeochemistry. Here, we determined elemental stoichiometries of aluminum, iron, copper, nickel, zinc, cobalt, and manganese associated with a fraction of the DOM pool isolated by solid-phase extraction at ambient pH (DOM SPE-amb ) from the Amazon plume. We found that the rank order of TM stoichiometry within the DOM SPE-amb fraction was underpinned by the chemical periodicity of the TM. Furthermore, the removal of the TM SPE-amb pool at low salinity was related to the chemical hardness of the TM ion. Thus, the biogeochemistry of TMs bound to the DOM SPE-amb component in the Amazon plume was determined by the chemical nature of the TM and not by that of the DOM SPE-amb . Metal chemistry controls biogeochemistry of metals bound to organic matter in the Amazon plume.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Detailed geochemical and mineralogical insights into some of the richest rare earth elements and yttrium (REY)-containing bioapatites from ocean-floor sediments have been provided by combining laser ablation inductively coupled plasma diffraction analysis, and Ce L3-edge high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy. Bioapatites at 1.94 and 4.70 m below the seafloor (mbsf) of the Clarion-Clipperton Zone (CCZ) of the Pacific Ocean have 26,600 (RSD = 15.7%, n = 20) and 30,300 (RSD = 14.6%, n = 10) mg/kg (mg/kg) total REY, respectively, and bioapatites at 2.28 and 6.95 mbsf of the Peru Basin have 15,500 (RSD = 15.6%, n = 20) and 15,700 (RSD = 17.8%, n = 29) mg/kg total REY, respectively. All bioapatite specimens have a variety of isomorphic substitutions in all atomic positions of the crystallographic structure. The average crystallochemical formula of bioapatites at 6.95 mbsf of the Peru Basin is [(PO4)2.71(SiO4)0.04(CO3,SO4)0.25][Ca4.57Na0.29Y0.04][F0.87Cl0.21]. All other substituents are below 0.04 atoms per formula unit. HR-XANES provides the first direct evidence for trivalent Ce in sediment apatites. The strong negative geochemical anomaly of Ce in fossil bioapatites is well explained by the occurrence of four valent Ce-MnO2 and CeO2 within the sediment and in seafloor ferromanganese nodules.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...