GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Document type
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Zoomorphology 105 (1985), S. 99-107 
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Compound eye ; Membrane recycling ; Degeneration ; Fluorescent dyes ; Musca domestica (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Single photoreceptor cells in the compound eye of the housefly Musca domestica were selectively illuminated and subsequently compared electron-microscopically with the unilluminated photoreceptors in the immediate surroundings. The rhabdomeres of the illuminated cells remain largely unaffected, but the cells show an increase in the number of coated pits, various types of vesicles, and degradative organelles; some of the latter organelles are described for the first time in fly photoreceptors. Coated pits are found not only at the bases of the microvilli, but also in other parts of the plasma membrane. Degradative organelles, endoplasmic reticulum (ER) and mitochondria aggregate in the perinuclear region. The rough ER and smooth ER are more elaborate, the number of Golgi stacks, free ribosomes and polysomes is increased, and the shape and distribution of heterochromatin within the nuclei are altered. Illuminated photoreceptors also interdigitate extensively with their neighbouring secondary pigment cells. These structural changes in illuminated fly photoreceptor cells indicate an increase in membrane turnover and cellular metabolism. When applied to the eye, Lucifer Yellow spreads into the extracellular space and is taken up only by the illuminated photoreceptor cells. These cells show the same structural modifications as above. Horseradish peroxidase applied in the same way is observed in pinocytotic vesicles and degradative organelles of the illuminated cells. Hence, the light-induced uptake of extracellular compounds takes place in vivo at least partially as a result of an increase in pinocytosis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...