GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1990-1994  (1)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the World Aquaculture Society 25 (1994), S. 0 
    ISSN: 1749-7345
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Nitrogen inputs, outputs and compartamentalization were quantified in a freshwater fish pond stocked with hybrid Oreochromis throughout a production cycle. The budget accounts for 91% of the nitrogen added to the system. Feed addition accounted for 87% of the nitrogen input and an additional 11% was attributable to nitrogen fixation, mainly in the water column. The balance of the nitrogen input was contained in the source water for the pond. Commercial-size fish accumulated 17.5% of the nitrogen added to the system. Most of the nitrogen was eventually deposited in the sediments. Nitrification constituted a major pathway for nitrogen transformation, but only 1% of the nitrogen input was lost through denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: anthropogenic impact ; interamerican seas ; nitrogen cycling ; nutrient limitation ; tropical biogeochemical processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems. Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition. Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: anthropogenic impact ; interamerican seas ; nitrogen cycling ; nutrient limitation ; tropical biogeochemical processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems. Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition. Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...