Skip to main content
Log in

Nitrogen cycling and anthropogenic impact in the tropical interamerican seas

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.

Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.

Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller RC (1988) Benthic fauna & biogeochemical processes in marine sediments: the role of burrow structures. In: Blackburn TH & Sorensen J (Eds) Nitrogen Cycling in Coastal Marine Eenvironments. Wiley, NY, U.S.A.

    Google Scholar 

  • Belser LW & Mays EAL (1980) Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl. Environ. Microbiol. 39: 505–510

    Google Scholar 

  • Bergman B, Gallon JR, Rai AN & Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiology Reviews 19: 139–185

    Google Scholar 

  • Bonilla JW, Senior J, Bugden O, Zafiriou & Jones R (1993) Seasonal distribution of nutrients and primary productivity on the eastern continental shelf of Venezuela as influenced by the Orinoco River. J. Geophys. Res. 98: 2245–2257

    Google Scholar 

  • Bushaw KL, Zepp RG, Tarr MA, Schultz-Janders D, Bourbonniere RA, Hodson RE, Miller WL, Bronk DA & Moran MA (1996) Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381: 404–407

    Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B & Carpenter EJ (1997)Trichodesmium, a globally significant marine cyanobacterium. Science 276: 1221–1229

    Google Scholar 

  • Capone DG (1983) Benthic nitrogen fixation. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 105–137). Academic

  • Carlsson P, Segatto AZ & Granéli E (1993) Nitrogen bound to humic matter of terrestrial origin — a nitrogen pool for coastal phytoplankton? Mar. Ecol. Prog. Ser. 97: 105–116

    Google Scholar 

  • Carpenter EJ & Capone DG (1992) Nitrogen fixation inTrichodesmium blooms. In: Carpenter EJ, Capone DG & Rueter JG (Eds) Marine Pelagic Cyanobacteria:Trichodesmium and Other Diazotrophs (pp 211–217). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Carpenter EJ (1983) Nitrogen fixation by marineOscillatoria (Trichodesmium) in the world's ocean. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 65–104). Academic

  • Chen R (1996) Ecological analysis and simulation models of landscape patterns in mangrove forest development and soil characteristics along the Shark River estuary, Florida. PhD Dissertation, University of Southwestern Louisiana, Lafayette, Louisiana, U.S.A.

    Google Scholar 

  • Clark LL, Ingall ED & Benner R (1998) Marine phosphorus is selectively remineralized. Nature 393: 426

    Google Scholar 

  • Corredor JE, Morell JM & Díaz MR (1994) Environmental degradation, nitrogen dynamics and proliferation of the filamentous cyanophyteMicrocoleus lyngbyaceus in nearshore Caribbean waters. In: Ezio Amato (Ed.) Mediterraneo e Caraibe due mari in pericolo? Sversamenti accidentali di idrocarburi ed emergenze causate dalle alghe. ICRAM/IFREMER. Atti del Convegno Internazionale. Genova 1992

    Google Scholar 

  • Corredor JE (1976) Aspects of phytoplankton dynamics in the Caribbean Sea. FAO Fisheries Report No. 200: 101–114

    Google Scholar 

  • Corredor JE (1979) Phytoplankton response to low-level nutrient enrichment through upwelling in the Colombian Caribbean Basin. Deep-Sea Res. 26A: 731–741

    Google Scholar 

  • Corredor JE & Capone DG (1985) Studies on nitrogen diagenesis in coral reef sands. In: Gabrie C et al. (Eds) Proc. Vth Intnl. Coral Reef Symp. 3: 395–399. Papeete, Tahiti, French Polynesia

    Google Scholar 

  • Corredor JE & Morell J (1985) Inorganic nitrogen in coral reef sediments. Mar. Chem. 16: 379–384

    Google Scholar 

  • Corredor JE & Morell JM (1994) Nitrate depuration of secondary sewage effluents in mangrove sediments. Estuaries. 17(2): 295–300

    Google Scholar 

  • Corredor JE & Morell JM (1989) Assessment of inorganic nitrogen flux across the sedimentwater interface in a tropical lagoon. Est Coast Shelf Sci 28: 339–345

    Google Scholar 

  • Corredor JE, Morell J & Mendez A (1984) Dissolved nitrogen, phytoplankton biomass and island mass effects in the northeastern Caribbean Sea. Carib. J. Sci. 20: 129–137

    Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP, Morell JM & Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol. Oceanogr. 33: 114–120

    Google Scholar 

  • Corredor JE, Morell JM & Bauzá J (In Press) Atmospheric nitrous oxide flux from mangrove sediments. Mar. Poll. Bull.

  • Corredor JE & Morell JM (In Review) Seasonal variation of physical and biogeochemical features is Eastern Caribbean surface water. Submitted to J. Geophys. Res.

  • Delwiche CC (1981) The nitrogen Cycle & Nitrous Oxide. In: Delwiche CC (Ed.) Denitrification, Nitrification and Atmospheric Nitrous Oxide (pp 1–84). John Wiley & Sons, NY, U.S.A.

    Google Scholar 

  • Diaz MR, Corredor JE & Morell JM (1990) Inorganic nitrogen uptake byMicrocoleus lynbyaceus mat communities in a semi-eutrophic marine community. Limnol. Oceanogr. 35: 1788–1795

    Google Scholar 

  • Downing JA (1997) Marine nitrogen:phosphorus stoichiometry and the global N:P cycle. Biogeochemistry 37: 237–252

    Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs 65: 477–505

    Google Scholar 

  • Garret C & Munk W (1972) Oceanic mixing by breaking internal waves. Deep-Sea Res. 19: 823–832

    Google Scholar 

  • Gotto JW & Taylor BF (1976) N2 fixation associated with decaying leaves of the red mangrove (Rhizophora mangle). Applied and Environmental Microbiology 31: 781–783

    Google Scholar 

  • Gotto JW, Tabita FR & Baalen CV (1981) Nitrogen fixation in intertidal environments of the Texas gulf coast. Estuarine, Coastal and Shelf Science 12: 231–235

    Google Scholar 

  • Howarth RW & Marino R (1998) A mechanistic approach to understanding why so many estuaries and brackish waters are nitrogen limited. In: Hellstrom T (Ed.) Effects of Nitrogen in the Aquatic Environment. Swedish National Committee for IAWQ, Royal Swedish Academy of Sciences, Stockholm, in press

    Google Scholar 

  • Howarth R, Billen WG, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P & Zhao-Liang Zhu (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35: 75–139

    Google Scholar 

  • Howarth RWHS, Marino Jensen R & Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Tiessen H (Ed) Phosphorus in the Global Environment (pp 323–345). Wiley & Sons, Chichester

    Google Scholar 

  • Howarth RW, Marino R & Chan F. What regulates nitrogen fixation by planktonic cyanobacteria in aquatic ecosystems? This volume

  • Howarth RW, Marino R, Lane J & Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669–687

    Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. A. Rev. Ecol. 19: 89–110

    Google Scholar 

  • Jensen H, McGlathery KJ, Marino R & Howarth RW (1998) Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol. Oceanogr. 43: 799–810

    Google Scholar 

  • Kaplan WA (1983) Nitrification. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 139–190). Academic, NY, U.S.A.

    Google Scholar 

  • Kimball MC & Teas HJ (1975) Nitrogen fixation in mangrove areas of southern Florida. In: Walsh G, Snedaker S & Teas H (Eds) Proceedings of the International Symposium on the Biology and Management of Mangroves (pp 654–660). Institute of Food and Agricultural Sciences University of Florida, Gainesville, Florida, U.S.A.

    Google Scholar 

  • Koch MS (1996) Resource availability and abiotic stress effects onRhizophora Mangle L. (Red Mangrove) development in South Florida. PhD Dissertation, University of Miami, Coral Gables, Florida, U.S.A.

    Google Scholar 

  • Krom MD & Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25: 797–806

    Google Scholar 

  • Lapointe B, Littler MM & Littler DS (1992) Modification of benthic community structure by natural eutrophication: The Belize Barrier reef. In: Richmond RH (Ed.) Proc. 7th Coral Reef Symp. Guam. 1: 323–334

  • Law CS & Owens JP (1990) Significant flux of atmospheric nitrous oxide from the northwest Indian Ocean. Nature 346: 826–828

    Google Scholar 

  • Lewis WM & Saunders JF III (1989) Concentration and transport of dissolved and suspended substances in the Orinoco River. Biogeochemistry 7: 103–240

    Google Scholar 

  • Littler MM, Littler DS & Lapointe B (1992) Modification of tropical reef community structure due to cultural eutrophication: The southwest coast of Martinique. In: Richmond RH (Ed.) Proc. 7th Coral Reef Symp. Guam. 1: 335–343

  • Lynch JC, Meriwether JR, McKee BA, Vera-Herrera F & Twilley RR (1989) Recent accretion in mangrove ecosystems based on137Cs and210Pb. Estuaries 12: 284–299

    Google Scholar 

  • Margalef R (1965) Composición y distribución del fitoplancton In: Estudios sobre el Ecosistema Pelágico del N.E. Venezuela. Mem. Fund. Cienc. Nat. La Salle 25: 141–208

    Google Scholar 

  • Margalef R (1971) The pelagic ecosystem of the Caribbean Sea. In: Symposium on Investigations and Resources of the Caribbean Sea and Adjacent Regions (pp 483–489). UNESCO

  • McGlathery K, Marino JR & Howarth RW (1994) Variable rates of phosphate uptake by shallow marine sediments: Mechanisms and ecological significance. Biogeochemistry 25: 127–146

    Google Scholar 

  • McGlathery KJ, Howarth RW & Marino R (1992) Nutrient limitation of the macroalga,Penicillus capitatus, associated with subtropical seagrass meadows in Bermuda. Estuaries 15: 18–25

    Google Scholar 

  • Meybeck M (1993) C, N, P, and S in rivers: from sources to global inputs. In: Wollast R Mackenzie FT & Chou L (Eds) Interaction of C, N, P, and S. Biogeochemical Cycles and Global Change (pp 163–193). Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Moran MA & Hudson RE (1994) Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnol. Oceanog. 39: 762–771

    Google Scholar 

  • Morell JM & Corredor JE (1993) Sediment nitrogen trapping in a mangrove lagoon. Est. Coast. & Shelf Sci. 37(2): 203–212

    Google Scholar 

  • Morell JM & Corredor JE (In Review) Fertilization of the Eastern Caribbean by the Orinoco River: How does it spread so far? Submitted to J. Geophys. Res.

  • Morese JW, Zullig JJ, Bernstein LD, Millero FJ, Milne P, Mucci A & Choppin GR (1985) Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Am. J. Sci. 285: 147–185

    Google Scholar 

  • Morse JW, Zullig JJ, Iverson RL, Choppin GR, Mucci A & Millero FJ (1987) The influence of seagrass beds on carbonate sediments in the Bahamas. Mar. Chem. 22: 71–83

    Google Scholar 

  • Mosquera AI, Corredor JE & Morell JM (1998) Exponential collapse of benthic depurative capacity in a eutrophic tropical marine ecosystem: A threshold response to organic nitrogen loading. Chemistry and Ecology 14: 341–355

    Google Scholar 

  • Muller Karger FE, McClain CR, Fisher TR, Esaias WE & Varela R (1989) Pigment distribution in the Caribbean Sea: Observations from space. Prog. Oceanog. 23: 23–64

    Google Scholar 

  • Naqvi SWA & Noronha RJ (1991) Nitrous oxide in the Arabian Sea. Deep-Sea Res. 38: 872–890

    Google Scholar 

  • Nevison CD, Weiss RF & Ericksson DJ III (1995) Global oceanic emissions of nitrous oxide. J. Geophys. Res. 100 (C8): 15,809–15,820

    Google Scholar 

  • Nieves FY & Corredor JE (1987) Gradientes de fijación de nitrógeno en los sedimentos marinos asociados a arrecifes coralinos en el suroeste de Puerto Rico. An. Inst. Inv. Mar. Punta de Betín. 17: 27–37

    Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, DiToro DM, Elmgren R, Garber JH, Gibline AE, Jahnke RA, Owens NJP, Pilson MEQ & Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141–180

    Google Scholar 

  • Onuf C, Teal J & Valiela I (1977) The interactions of nutrients, plant growth, and herbivory in a mangrove ecosystem. Ecology 58: 514–526

    Google Scholar 

  • Pelegri SP, Rivera-Monroy VH & Twilley RR (1997) A comparison of nitrogen fixation (acetylene reduction) among three species of mangrove litter, sediments, and pneumatophores in south Florida, U.S.A. Hydrobiologia 356: 73–79

    Google Scholar 

  • Pelegri SP & Twilley RR (1998) Interactions between nitrogen fixation (acetylene reduction) and leaf litter decomposition of two mangrove species from south Florida, U.S.A.: potential inhibitory effects of phenolics. Marine Biology 131: 53–61

    Google Scholar 

  • Potts M (1979) Nitrogen fixation (acetylene reduction) associated with communities of heterocystous and non-heterocystous blue-green algae on mangrove forests of Sinai. Oecologia 39: 359–373

    Google Scholar 

  • Richardson M (1985) Nitrification Inhibition in the Treatment of Sewage. The Royal Society of Chemistry, Whitstable

    Google Scholar 

  • Rivera-Monroy VH & Twilley RR (1996) The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnol. Oceanog. 41: 284–296

    Google Scholar 

  • Rivera-Monroy VH, Day JW, Twilley RR, Vera-Herrera F & Coronado-Molina C (1995a) Flux of nitrogen and sediment in a fringe mangrove forest in Terminos Lagoon, Mexico. Estuarine, Coastal and Shelf Science 40: 139–160

    Google Scholar 

  • Rivera-Monroy VH, Twilley RR, Boustany RG, Day JW, Vera-Herrera F & Ramirez MC (1995) Direct denitrification in mangrove sediments in Terminos Lagoon, Mexico. Marine Ecology Progress Series 126: 97–109

    Google Scholar 

  • Rodhe H (1990) A comparison of the contribution of various gases to the green-house effect. Science 248: 1217–1219

    Google Scholar 

  • Ryther JH, Menzel DW & Corwin N (1967) Influence of the Amazon River outflow on the ecology of the Western Tropical Atlantic I. Hydrography and nutrient chemistry. J. Mar. Res. 25: 69–83

    Google Scholar 

  • Sánchez-Suárez IG, Troncone-Osorio FC & Díaz-Ramos JR (1995) The phytoplankton form the Gulf of Paria, Venezuela (June 1984) Marine Biology Acta Científica Venezolana 46: 192–205

    Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance Limnol. Oceanogr. 33(4), pt 2: 702–724

    Google Scholar 

  • Short FT, Dennison WC & Capone DC (1990) Phosphorus-limited growth of the tropical seagrassSyringodium filiforme in carbonate sediments. Mar. Ecol. Prog. Ser. 62: 169–174

    Google Scholar 

  • Smith SV (1984) Phosphorus vs nitrogen limitation in the marine environment. Limnol. Oceanogr. 29: 1149–1160

    Google Scholar 

  • Twilley RR (1997) Mangrove wetlands. In: Messina M & Connor W (Eds) Southern Forested Wetlands: Ecology and Management (pp 445–473). CRC Press, Boca Raton, Florida, U.S.A.

    Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R & Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111: 109–122

    Google Scholar 

  • Twilley RR (1995) Properties of mangrove ecosystems related to the energy signature of coastal environments. In: Hall CAS (Ed.) Maximum Power: The Ideas and Applications of Odum HT (pp 43–62). University Press of Colorado, Niwot, CO, U.S.A.

    Google Scholar 

  • Twilley RR, Lugo AE & Patterson-Zucca C (1986) Production, standing crop, and decomposition of litter in basin mangrove forests in southwest Florida. Ecology 67: 670–683

    Google Scholar 

  • Tyrrell T & Law CS (1997) Low nitrate:phosphate ratios in the global ocean. Nature 387: 793–796

    Google Scholar 

  • Van der Valk AG & Attiwill PM (1984) Acetylene reduction in anAvicennia marina community in southern Australia. Australian J. Botany 32: 157–164

    Google Scholar 

  • Vanzella A, Guerrero MA & Jones RD (1989) Effect of CO and light on ammonium and nitrite oxidation by chemolithotrophic bacteria. Mar. Ecol. Prog. Ser. 57: 69–76

    Google Scholar 

  • Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochem. 13: 87–115

    Google Scholar 

  • Weiss RF (1981) The temporal and spatial distribution of atmospheric nitrous oxide. J. Geophys. Res. 86: 7185–7195

    Google Scholar 

  • Yoshioka P, Owen G & Pesante D (1985) Spatial and temporal variations in Caribbean Zooplankton near Puerto Rico. J. Plankton Res. 7: 733–751

    Google Scholar 

  • Zuberer DA & Silver WS (1978) Biological nitrogen fixation (acetylene reduction) associated with Florida mangroves. Applied and Environmental Microbiology 35: 567–575

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corredor, J.E., Howarth, R.W., Twilley, R.R. et al. Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. Biogeochemistry 46, 163–178 (1999). https://doi.org/10.1007/BF01007578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007578

Key words

Navigation