GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); DATE/TIME; EPOCA; Estimated; Estimated by regressing O2 against time; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Laboratory strains; Measured; PAR sensor LI-1000, LI-COR Inc.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Single species; Stylophora pistillata; Temperature; Temperature, water  (1)
  • Hypobaric chamber  (1)
  • 2000-2004  (2)
Document type
Keywords
Publisher
Years
  • 2000-2004  (2)
Year
  • 1
    ISSN: 1439-6327
    Keywords: Key words Erythropoietin ; Erythropoiesis ; Hypoxia ; Hypobaric chamber ; Altitude
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study aimed to determine whether brief hypoxic stimuli in a hypobaric chamber are able to elicit erythropoietin (EPO) secretion, and to effectively stimulate erythropoiesis in the short term. In two different experiments, a set of haematological, biochemical, haemorheological, aerobic performance, and medical tests were performed in two groups of healthy subjects. In the first experiment, the mean plasma concentration of EPO ([EPO]) increased from 8.7 to 13.5 mU · ml−1 (55.2%; P 〈 0.01) after 90 min of acute exposure at 540 hPa, and continued to rise until a peak was attained 3 h after the termination of hypoxia. In the second experiment, in which subjects were exposed to a simulated altitude of up to 5500 m (504 hPa) for 90 min, three times a week for 3 weeks, all haematological indicators of red cell mass increased significantly, reaching the highest mean values at the end of the programme or during the subsequent 2 weeks, including packed cell volume (from 42.5 to 45.1%; P 〈 0.01), red blood cell count (from 4.55 × 106 to 4.86 × 106 · l−1; P 〈 0.01), reticulocytes (from 0.5 to 1.4%; P 〈 0.01), and haemoglobin concentration (from 14.3 to 16.2 g · dl−1; P 〈 0.01), without an increase in blood viscosity. Arterial blood oxygen saturation during hypoxia was improved (from 60% to 78%; P 〈 0.05). Our most relevant finding is the ability to effectively stimulate erythropoiesis through brief intermittent hypoxic stimuli (90 min), in a short period of time (3 weeks), leading to a lower arterial blood desaturation in hypoxia. The proposed mechanism for these haematological and functional adaptations is the repeated triggering effect of EPO production caused by the intermittent hypoxic stimuli.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); DATE/TIME; EPOCA; Estimated; Estimated by regressing O2 against time; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Laboratory strains; Measured; PAR sensor LI-1000, LI-COR Inc.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Single species; Stylophora pistillata; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1600 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...