GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (3)
  • AGU (American Geophysical Union)  (2)
  • CLIVAR  (2)
  • DWD  (1)
  • 2000-2004  (5)
  • 1995-1999  (3)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    DWD
    In:  Promet - Meteorologische Fortbildung, 29 (1-4). pp. 15-28.
    Publication Date: 2016-10-04
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26(10) . pp. 2281-2285.
    Publication Date: 2018-04-05
    Description: The compatibility of the Gent and McWilliams thickness mixing parameterization with perturbation thickness fluxes evaluated from eddy-resolving North Atlantic model results is investigated. After extensive spatial and temporal averaging, a linear correlation between the parameterized fluxes and those calculated directly from model fluctuations in the subtropics could be found. A direct estimate of a constant mixing parameter κ could be inferred in the order of 1.0 × 107 cm2 s−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    CLIVAR
    In:  CLIVAR Exchanges, 26 (8 (2-3)). pp. 3-5.
    Publication Date: 2019-02-01
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 108 (C3). p. 3092.
    Publication Date: 2019-04-04
    Description: A first step for improving the climatological state of high‐resolution general circulation models by means of data assimilation is presented. A method developed for the assimilation of statistical characteristics into chaotic ocean models is applied to assimilate SSH variability from TOPEX/POSEIDON and ERS1 in association with temperature and salinity from the World Ocean Atlas 1997 in order to estimate the underlying mean circulation. The method requires a parameterization of SSH variability which derives from the approach of Green and Stone. By estimating initial conditions for temperature and salinity, a mean state is achieved which, although not fully consistent with the altimetric and climatological data, is markedly improved on time scales of one year in comparison to the control run. The assimilation of SSH variability data introduces complementary information about the main frontal structures consistent with climatological observations. The state is however not an equilibrium state and returns back to the first guess quasi‐equilibrium state for longer integration periods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 101 (C6). pp. 14175-14190.
    Publication Date: 2019-09-23
    Description: We present a new method for assimilating observations of sea surface height (SSH) into a high‐resolution primitive equation model. The method is based on the concept of reinitialization. First, the surface velocity increments necessary to adjust the model forecast to the observed geostrophic surface currents are projected onto deep velocity increments by a linear regression method. Second, changes in the density field required to balance the changes in the velocity field geostrophically are obtained from an inversion of the thermal wind equation. A unique partition of the density increments into corresponding temperature and salinity changes is realized by conserving the local θ‐S relation of the model forecast. In contrast to pure statistical methods that infer temperature and salinity changes from correlations with SSH anomalies, our approach explicitly conserves water mass properties on isopycnals. For the assimilation experiment we use optimally interpolated maps of Geosat SSH anomalies (the mean topography is taken from the model), which are assimilated into the World Ocean Circulation Experiment (WOCE) Community Modeling Effort (CME) model of the North Atlantic Ocean at 5‐day intervals covering the year 1987. It is shown that the assimilation significantly improves the model's representation of eddy activity, with the hydrographic structure of individual eddies agreeing well with independent hydrographic observations. The importance of a careful treatment of water mass properties in the assimilation process is discussed and further illustrated by comparing different assimilation schemes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 . pp. 1682-1700.
    Publication Date: 2018-04-06
    Description: Different processes have been proposed to explain the large-scale spreading of Mediterranean Water (MW) in the North Atlantic, however, no systematic study comparing the efficiency of different processes is yet available. Here, the authors present a series of experiments in a unified framework that is designed to quantify the effects of several physical processes on the spreading of MW in an idealized model of the North Atlantic. The common technique of restoring temperature and salinity to an observed distribution near the Mediterranean inflow fails to produce an adequate amount of MW because the eastern boundary region near the MW inflow is rather quiescent in models. Diapycnal processes like double diffusion and cabbeling turn out too inefficient to alone account for the large-scale MW anomaly. However, with a preexisting anomaly, double diffusion leads to a considerable northward and zonal redistribution of MW. The density anomaly induced by cabbeling curtails the zonal spreading of MW while it increases the northward spreading. With isopycnal mixing and the weak mean flow that prevails in the outflow region, a spatial distribution of the MW anomaly is obtained that is inconsistent with observations. Unrealistically high diffusion coefficients would be necessary to reproduce the observed salt flux into the Atlantic. The most effective process in the experiments is the volume flux associated with the Atlantic–Mediterranean exchange. The current system that is established in response to the inflow of MW into the Atlantic carries the anomaly almost 30° of longitude into the basin and along the eastern margin up to the northeastern corner of the domain and farther along the northern boundary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-10
    Description: A model of the Atlantic Ocean was forced with decadal-scale time series of surface fluxes taken from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis. The bulk of the variability of the oceanic circulation is found to be related to the North Atlantic oscillation (NAO). Both realistic experiments and idealized sensitivity studies with the model show a fast (intraseasonal timescale) barotropic response and a delayed (timescale about 6–8 yr) baroclinic oceanic response to the NAO. The fast response to a high NAO constitutes a barotropic anticyclonic circulation anomaly near the subpolar front with a substantial decrease of the northward heat transport and an increase of northward heat transport in the subtropics due to changes in Ekman transport. The delayed response is an increase in subpolar heat transport due to enhanced meridional overturning and due to a spinup of the subpolar gyre. The corresponding subpolar and subtropical heat content changes could in principle act as an immediate positive feedback and a delayed negative feedback to the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...