GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 13 ( 2005-07-01), p. 2429-2440
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 13 ( 2005-07-01), p. 2429-2440
    Abstract: A Bayesian analysis of the evidence for human-induced climate change in global surface temperature observations is described. The analysis uses the standard optimal detection approach and explicitly incorporates prior knowledge about uncertainty and the influence of humans on the climate. This knowledge is expressed through prior distributions that are noncommittal on the climate change question. Evidence for detection and attribution is assessed probabilistically using clearly defined criteria. Detection requires that there is high likelihood that a given climate-model-simulated response to historical changes in greenhouse gas concentration and sulphate aerosol loading has been identified in observations. Attribution entails a more complex process that involves both the elimination of other plausible explanations of change and an assessment of the likelihood that the climate-model-simulated response to historical forcing changes is correct. The Bayesian formalism used in this study deals with this latter aspect of attribution in a more satisfactory way than the standard attribution consistency test. Very strong evidence is found to support the detection of an anthropogenic influence on the climate of the twentieth century. However, the evidence from the Bayesian attribution assessment is not as strong, possibly due to the limited length of the available observational record or sources of external forcing on the climate system that have not been accounted for in this study. It is estimated that strong evidence from a Bayesian attribution assessment using a relatively stringent attribution criterion may be available by 2020.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 9 ( 2005-05-01), p. 1326-1350
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 9 ( 2005-05-01), p. 1326-1350
    Abstract: Observed changes in intense precipitation (e.g., the frequency of very heavy precipitation or the upper 0.3% of daily precipitation events) have been analyzed for over half of the land area of the globe. These changes have been linked to changes in intense precipitation for three transient climate model simulations, all with greenhouse gas concentrations increasing during the twentieth and twenty-first centuries and doubling in the later part of the twenty-first century. It was found that both the empirical evidence from the period of instrumental observations and model projections of a greenhouse-enriched atmosphere indicate an increasing probability of intense precipitation events for many extratropical regions including the United States. Although there can be ambiguity as to the impact of more frequent heavy precipitation events, the thresholds of the definitions of these events were raised here, such that they are likely to be disruptive. Unfortunately, reliable assertions of very heavy and extreme precipitation changes are possible only for regions with dense networks due to the small radius of correlation for many intense precipitation events.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Climate Vol. 20, No. 4 ( 2007-02-15), p. 650-666
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 4 ( 2007-02-15), p. 650-666
    Abstract: Climate records over the last millennium place the twentieth-century warming in a longer historical context. Reconstructions of millennial temperatures show a wide range of variability, raising questions about the reliability of currently available reconstruction techniques and the uniqueness of late-twentieth-century warming. A calibration method is suggested that avoids the loss of low-frequency variance. A new reconstruction using this method shows substantial variability over the last 1500 yr. This record is consistent with independent temperature change estimates from borehole geothermal records, compared over the same spatial and temporal domain. The record is also broadly consistent with other recent reconstructions that attempt to fully recover low-frequency climate variability in their central estimate. High variability in reconstructions does not hamper the detection of greenhouse gas–induced climate change, since a substantial fraction of the variance in these reconstructions from the beginning of the analysis in the late thirteenth century to the end of the records can be attributed to external forcing. Results from a detection and attribution analysis show that greenhouse warming is detectable in all analyzed high-variance reconstructions (with the possible exception of one ending in 1925), and that about a third of the warming in the first half of the twentieth century can be attributed to anthropogenic greenhouse gas emissions. The estimated magnitude of the anthropogenic signal is consistent with most of the warming in the second half of the twentieth century being anthropogenic.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Climate Vol. 21, No. 15 ( 2008-08-01), p. 3872-3889
    In: Journal of Climate, American Meteorological Society, Vol. 21, No. 15 ( 2008-08-01), p. 3872-3889
    Abstract: The influence of large-scale modes of climate variability on worldwide summer and winter temperature extremes has been analyzed, namely, that of the El Niño–Southern Oscillation, the North Atlantic Oscillation, and Pacific interdecadal climate variability. Monthly indexes for temperature extremes from worldwide land areas are used describe moderate extremes, such as the number of exceedences of the 90th and 10th climatological percentiles, and more extreme events such as the annual, most extreme temperature. This study examines which extremes show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show that temperature extremes are substantially affected by large-scale circulation patterns, and they show distinct regional patterns of response to modes of climate variability. The effects of the El Niño–Southern Oscillation are seen throughout the world but most clearly around the Pacific Rim and throughout all of North America. Likewise, the influence of Pacific interdecadal variability is strongest in the Northern Hemisphere, especially around the Pacific region and North America, but it extends to the Southern Hemisphere. The North Atlantic Oscillation has a strong continent-wide effect for Eurasia, with a clear but weaker effect over North America. Modes of variability influence the shape of the daily temperature distribution beyond a simple shift, often affecting cold and warm extremes and sometimes daytime and nighttime temperatures differently. Therefore, for reliable attribution of changes in extremes as well as prediction of future changes, changes in modes of variability need to be accounted for.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2006
    In:  Nature Vol. 440, No. 7087 ( 2006-04-20), p. 1029-1032
    In: Nature, Springer Science and Business Media LLC, Vol. 440, No. 7087 ( 2006-04-20), p. 1029-1032
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2008
    In:  Nature Geoscience Vol. 1, No. 11 ( 2008-11), p. 750-754
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 1, No. 11 ( 2008-11), p. 750-754
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2009
    In:  Journal of Statistical Planning and Inference Vol. 139, No. 3 ( 2009-3), p. 1243-1245
    In: Journal of Statistical Planning and Inference, Elsevier BV, Vol. 139, No. 3 ( 2009-3), p. 1243-1245
    Type of Medium: Online Resource
    ISSN: 0378-3758
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 1468074-9
    detail.hit.zdb_id: 753153-9
    SSG: 17,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Climate Vol. 20, No. 8 ( 2007-04-15), p. 1419-1444
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 8 ( 2007-04-15), p. 1419-1444
    Abstract: Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of 20-yr return values of annual extremes of near-surface temperature and 24-h precipitation amounts. The simulated changes in extremes are documented for years 2046–65 and 2081–2100 relative to 1981–2000 in experiments with the Special Report on Emissions Scenarios (SRES) B1, A1B, and A2 emission scenarios. Overall, the climate models simulate present-day warm extremes reasonably well on the global scale, as compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes, especially in sea ice–covered areas. Simulated present-day precipitation extremes are plausible in the extratropics, but uncertainties in extreme precipitation in the Tropics are very large, both in the models and the available observationally based datasets. Changes in warm extremes generally follow changes in the mean summertime temperature. Cold extremes warm faster than warm extremes by about 30%–40%, globally averaged. The excessive warming of cold extremes is generally confined to regions where snow and sea ice retreat with global warming. With the exception of northern polar latitudes, relative changes in the intensity of precipitation extremes generally exceed relative changes in annual mean precipitation, particularly in tropical and subtropical regions. Consistent with the increased intensity of precipitation extremes, waiting times for late-twentieth-century extreme precipitation events are reduced almost everywhere, with the exception of a few subtropical regions. The multimodel multiscenario consensus on the projected change in the globally averaged 20-yr return values of annual extremes of 24-h precipitation amounts is that there will be an increase of about 6% with each kelvin of global warming, with the bulk of models simulating values in the range of 4%–10% K−1. The very large intermodel disagreements in the Tropics suggest that some physical processes associated with extreme precipitation are not well represented in models. This reduces confidence in the projected changes in extreme precipitation.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2009
    In:  Science Vol. 325, No. 5943 ( 2009-08-21), p. 955-956
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 325, No. 5943 ( 2009-08-21), p. 955-956
    Abstract: As the risks of climate change and the difficulty of effectively reducing greenhouse gas emissions become increasingly obvious, potential geoengineering solutions are widely discussed. For example, in a recent report, Blackstock et al. explore the feasibility, potential impact, and dangers of shortwave climate engineering, which aims to reduce the incoming solar radiation and thereby reduce climate warming ( 1 ). Proposed geoengineering solutions tend to be controversial among climate scientists and attract considerable media attention ( 2 , 3 ). However, by focusing on limiting warming, the debate creates a false sense of certainty and downplays the impacts of geoengineering solutions.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Climate Vol. 19, No. 20 ( 2006-10-15), p. 5058-5077
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 20 ( 2006-10-15), p. 5058-5077
    Abstract: A significant influence of anthropogenic forcing has been detected in global- and continental-scale surface temperature, temperature of the free atmosphere, and global ocean heat uptake. This paper reviews outstanding issues in the detection of climate change and attribution to causes. The detection of changes in variables other than temperature, on regional scales and in climate extremes, is important for evaluating model simulations of changes in societally relevant scales and variables. For example, sea level pressure changes are detectable but are significantly stronger in observations than the changes simulated in climate models, raising questions about simulated changes in climate dynamics. Application of detection and attribution methods to ocean data focusing not only on heat storage but also on the penetration of the anthropogenic signal into the ocean interior, and its effect on global water masses, helps to increase confidence in simulated large-scale changes in the ocean. To evaluate climate change signals with smaller spatial and temporal scales, improved and more densely sampled data are needed in both the atmosphere and ocean. Also, the problem of how model-simulated climate extremes can be compared to station-based observations needs to be addressed.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...