GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (4)
  • GSA, Geological Society of America  (2)
  • International Association of Geoanalysts  (2)
  • Nature Research
  • 2005-2009  (4)
  • 1
    Publication Date: 2017-08-04
    Description: Aragonitic clathrites are methane-derived precipitates that are found at sites of massive near-seafloor gas hydrate (clathrate) accumulations at the summit of southern Hydrate Ridge, Cascadia margin. These platy carbonate precipitates form inside or in proximity to gas hydrate, which in our study site currently coexists with a fluid that is highly enriched in dissolved ions as salts are excluded during gas hydrate formation. The clathrites record the preferential incorporation of 18O into the hydrate structure and hence the enrichment of 16O in the surrounding brine. We measured δ18O values as high as 2.27‰ relative to Peedee belemnite that correspond to a fluid composition of −1.18‰ relative to standard mean ocean water. The same trend can be observed in Ca isotopes. Ongoing clathrite precipitation causes enrichment of the 44Ca in the fluid and hence in the carbonates. Carbon isotopes confirm a methane source for the carbonates. Our triple stable isotope approach that uses the three main components of carbonates (Ca, C, O) provides insight into multiple parameters influencing the isotopic composition of the pore water and hence the isotopic composition of the clathrites. This approach provides a tool to monitor the geochemical processes during clathrate and clathrite formation, thus recording the evolution of the geochemical environment of gas hydrate systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The marine calcifying algae Emiliania huxleyi (coccolithophores) was grown in laboratory cultures under varying conditions with respect to the environmental parameters of temperature and carbonate ion concentration [CO32-] concentration. The Ca isotope composition of E. huxleyi's coccoliths reveals new insights into fractionation processes during biomineralization. The temperature-dependent Ca isotope fractionation resembles previous calibrations of inorganic and biogenic calcite and aragonite. Unlike inorganically precipitated calcite, the [CO32-] concentration of the medium has no significant effect on the Ca isotope composition of the coccoliths. These results indicate a decoupling of the chemical properties of the bulk medium and the calcifying vesicle. Cellular Ca pathways of E. huxleyi indicate that fractionation cannot occur at the crystal surface, as occurs during inorganic precipitation. The dominant processes leading to the observed Ca isotope fractionation pattern in E. huxleyi are most likely the dehydration of the Ca aquocomplex at the plasma membrane and the attachment of dissolved Ca to proteins of Ca channels. The independence of Ca isotope fractionation from [CO32-] and the small temperature dependence of E. huxleyi are also important for defining the isotopic signature of the oceanic Ca sink. Since coccolithophores contribute to about half the global CaCO3 production, a relatively uniform isotopic composition of the oceanic Ca sink is further supported.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-08
    Description: We report delta Ca-44/40((SRM 915a)) values for eight fused MPI-DING glasses and the respective original powders, six USGS igneous rock reference materials, the U-Th disequilibria reference material TML, IAEA-CO1 (Carrara marble) and several igneous rocks (komatiites and carbonatites). Sample selection was guided by three considerations: (1) to address the need for information values on reference materials that are widely available in support of interlaboratory comparison studies; (2) support the development of in situ laser ablation and ion microprobe techniques, which require isotopically homogenous reference samples for ablation; and (3) provide Ca isotope values on a wider range of igneous and metamorphic rock types than is currently available in the scientific literature. Calcium isotope ratios were measured by thermal ionisation mass spectrometry in two laboratories (IFM-GEOMAR and Saskatchewan Isotope Laboratory) using Ca-43/Ca-48- and Ca-42/Ca-43-double spike techniques and reported relative to the calcium carbonate reference material NIST SRM 915a. The measurement uncertainty in both laboratories was better than 0.2 parts per thousand at the 95% confidence level. The impact of different preparation methods on the delta Ca-44/40((SRM 915a)) values was found to be negligible. Except for ML3-B, the original powders and the respective MPI-DING glasses showed identical delta Ca-44/40((SRM 915a)) values; therefore, possible variations in the Ca isotope compositions resulting from the fusion process are excluded. Individual analyses of different glass fragments indicated that the glasses are well homogenised on the mm scale with respect to Ca. The range of delta Ca-44/40((SRM 915a)) values in the igneous rocks studied was larger than previously observed, mostly owing to the inclusion of ultramafic rocks from ophiolite sections. In particular, the dunite DTS-1 (1.49 +/- 0.06 parts per thousand) and the peridotite PCC-1 (1.14 +/- 0.07 parts per thousand) are enriched in Ca-44 relative to volcanic rocks (0.8 +/- 0.1 parts per thousand). The Carrara marble (1.32 +/- 0.06 parts per thousand) was also found to be enriched in Ca-44 relative to the values of assumed precursor carbonates (〈 0.8 parts per thousand). These findings suggest that the isotopes of Ca are susceptible to fractionation at high temperatures by, as yet, unidentified igneous and metamorphic processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    International Association of Geoanalysts | Wiley
    In:  Geostandards and Geoanalytical Research, 32 (2). pp. 27-32.
    Publication Date: 2019-08-08
    Description: The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =−1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement. La composition isotopique du calcium de NIST SRM 915b et 1486, fournis par l'Institut National des Standards et de la Technologie (NIST), a été analysée. Les valeurs du δ44/40Ca obtenues sur ces deux matériaux de référence, relativement au NIST SRM 915a sont: NIST SRM 915b =+0.72 ± 0.04‰ et NIST SRM 1486 =−1.01 ± 0.02‰. Le NIST SRM 1486 n'a nécessité aucune séparation chimique avant analyse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...