GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-08
    Description: The weathering of silicate minerals exposed on the continents is the largest sink of atmospheric CO2 on time scales of millions of years. The rate of this process is positively correlated with global mean temperature and atmospheric CO2 concentration, resulting in a negative feedback that stabilizes Earths’ climate (Berner, 2004). Detrital silicates derived from the physical denudation of the continents are a major component of marine sediments (Li and Schoonmaker, 2003). However, their geochemical behaviour is poorly understood and they are considered to be unimportant to the long-term carbon cycle. We show that in organic matter-rich sediments of the Sea of Okhotsk detrital silicates undergo intense weathering. This process is likely favoured by microbial activity, which lowers pore water pH and releases dissolved humic substances, and by the freshness of detrital silicates which originate from the cold, poorly weathered Amur River basin. Numerical simulations of early diagenesis show that submarine weathering rates in our study area are comparable to average continental weathering rates (Gaillardet et al., 1999). Furthermore, silicate weathering seems to be widespread in organic matter-rich sediments of continental margins, suggesting the existence of a significant CO2 sink there. These findings imply a greater efficiency of the silicate weathering engine also at low surface temperatures, resulting in a weakening of the negative feedback between pCO2, climate evolution and silicate weathering.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-21
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-21
    Description: The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Thermodynamic equations of stability and solubility of methane hydrate were developed using the method of Pitzer [Pitzer, K.S. (1991). Ionic interaction approach: Theory and data correlation. In: K.S. Pitzer (Editor), 2nd Edition, Activity Coefficients in Electrolyte Solutions. CRC Press, Roca Raton Ann Arbor Boston London, pp. 75–153.]. Dissociation pressures are calculated for different temperature and salinity conditions ranging from 273 to 293 K and 0–70 (salinity). The solubility of methane and methane hydrate in seawater is calculated for the same temperature and salinity ranges and for hydrostatic pressures (Pdis) up to 50 MPa. Since the composition of major pore water ions may change due to a variety of geochemical processes (i.e. anaerobic oxidation of organic matter or/and methane) affecting the activity of water, additional stability and solubility calculations are presented by substituting the equivalent amount of sulfate by hydrogen carbonate ions. Based on this rigorous thermodynamic analysis, the calculation of dissociation pressures has been approximated by empirical algorithms that are functions of temperature and salinity (chlorinity for pore water). Similar algorithms are presented for the calculation of methane concentrations in seawater and pore water equilibrated with methane hydrate as functions of salinity (chlorinity for pore water), temperature and hydrostatic pressure. In contrast to earlier approaches, the provided methods allow the calculation of these properties by easily applicable functions considering a continuous variation of the control parameters over a wide range of conditions that are met in the deep marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to similar to 650 mmol L-1 at similar to 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle QUEST revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at similar to 60 cm sediment depth that were 0.9 degrees C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (delta D-CH4 = -170.8 parts per thousand (SMOW), delta C-13-CH4 = -61.0 parts per thousand (V-PDB), delta C-13-C2H6 = -44.0 parts per thousand (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 +/- 0.5 x 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-03
    Description: Shallow gas hydrate accumulation in mud volcanoes in the Costa Rica forearc was postulated before, but is now proven by a find in surface sediments at the southwestern slope of the recently discovered Mound 11, a mud volcano located 30 km arcward from the trench, on the continental slope off Costa Rica at 1000 m water depth. The gas hydrate content of the recovered core was up to 60% and consisted mainly of methane hydrate. The δ13C (−45.2‰ to −43.3‰ PDB) and δD (−125‰ to −143‰ SMOW) values of methane from sampled hydrates indicate a deep (thermogenic) source of fossil methane generated by degradation of organic matter within the subducted slab. Near surface faults and deeply cutting faults, identified in multichannel seismic reflection profiles, provide pathways for fluid migration through the ∼6 km thick margin wedge into the ∼1 km of overlying terrigenous sediments. Mound 11 overlies a bottom simulating reflection at 340 m bsf and transport of sediment and methane-rich fluids from greater depth through the gas hydrate stability zone is suggested. The upper core segment (0–150 cm bsf) is composed of mud breccia and fluid channels, which indicates mud expulsion from Mound 11. Anaerobic methane oxidation is indicated by sulfate and methane depletion, hydrogen sulfide formation and an increase of alkalinity in the interface between the upper sediment unit and the lower laminated sediment unit where the gas hydrate is interbedded. The seawater-like sulfate and chloride concentrations and the concave up chloride profile measured in pore water of the upper core unit may rather reflect seawater influx than fluid outflow at this sampling site. The inflow is possibly driven by (episodic) mud and fluid discharge in the center of the mud mound creating shallow convective circulation cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-01
    Description: The main Marmara Fault exhibits numerous sites of fluid venting, observed during previous cruises and in particular with R.O.V. VICTOR during the MARMARASCARPS cruise (2002). Long CALYPSO cores were recovered near active vents and at reference sites during the MARMARA-VT cruise (2004), together with echosounder sub-bottom profiles (frequency of 3.5kHz). We compiled R.O.V. video observations from MARMARASCARPS cruise and show that all known seeps occur in relationship with strike-slip faults, providing pathways for fluid migration. Among the main active sites, a distinction is made between gas seeps and water seeps. At gas seeps, bubble emissions at the seafloor or disturbed echofacies on sounder profiles demonstrate the presence of free methane gas at a shallow depth within the sediment. Most cores displayed gas-related expansion, most intense for cores taken within the gas plumes. On the other hand. authigenic carbonate chimneys characterize the water seeps and visible water outflow was observed at two sites (in the Tekirdag and Central basins). The pore fluid chemistry data show that the water expelled at these sites is brackish water trapped in the sediment during lacustrine times (before 14 cal kyr BP), in relation with the paleoceanography in the Sea of Marmara. The chimney site in the Tekirdag Basin is located at the outlet of a canyon feeding a buried fan with coarse sandy turbidites. Pore fluid composition profiles indicate that the sand layers channel the brackish fluids laterally from the basin into the fault zone at less than 20 m depth. However, a deeper gas source cannot be excluded. (c) 2008 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-03
    Description: We report on the structural properties of natural gas hydrate crystals from the Sea of Okhotsk. Using powder X-ray diffraction (PXRD), it was determined that sediments from four locations contained type I gas hydrate, which encage mostly methane (96–98%) and a small amount of carbon dioxide. For all hydrates, the lattice constant was estimated to be at 113 K, which approximately equals that of pure methane hydrate. The result is in good agreement with the structure of artificially synthesized methane carbon dioxide mixed-gas hydrates. These results suggest that the lattice constant of the natural gas hydrate does not change due to a change of gas content. In addition, the thermal expansion of the sampled hydrate was measured for the temperature range of 83–173 K, and the resulting density of the hydrate crystal at 273 K was estimated to be . These results are essential for applying natural gas hydrates as an alternative natural fuel resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-03
    Description: Seven sediment cores were taken in the Sea of Okhotsk in a south-north transect along the slope of Sakhalin Island. The retrieved anoxic sediments and pore fluids were analyzed for particulate organic carbon (POC), total nitrogen, total sulfur, dissolved sulfate, sulfide, methane, ammonium, iodide, bromide, calcium, and total alkalinity. A novel method was developed to derive sedimentation rates from a steady-state nitrogen mass balance. Rates of organic matter degradation, sulfate reduction, methane turnover, and carbonate precipitation were derived from the data applying a steady-state transport-reaction model. A good fit to the data set was obtained using the following new rate law for organic matter degradation in anoxic sediments: View the MathML sourceRPOC=KCC(DIC)+C(CH4)+KC·kx·POC Turn MathJax on The rate of particulate organic carbon degradation (RPOC) was found to depend on the POC concentration, an age-dependent kinetic constant (kx) and the concentration of dissolved metabolites. Rates are inhibited at high dissolved inorganic carbon (DIC) and dissolved methane (CH4) concentrations. The best fit to the data was obtained applying an inhibition constant KC of 35 ± 5 mM. The modeling further showed that bromide and iodide are preferentially released during organic matter degradation in anoxic sediments. Carbonate precipitation is driven by the anaerobic oxidation of methane (AOM) and removes one third of the carbonate alkalinity generated via AOM. The new model of organic matter degradation was further tested and extended to simulate the accumulation of gas hydrates at Blake Ridge. A good fit to the available POC, total nitrogen, dissolved ammonium, bromide, iodide and sulfate data was obtained confirming that the new model can be used to simulate organic matter degradation and methane production over the entire hydrate stability zone (HSZ). The modeling revealed that most of the gas hydrates accumulating in Blake Ridge sediments are neither formed by organic matter degradation within the HSZ nor by dissolved methane transported to the surface by upward fluid flow but rather through the ascent of gas bubbles from deeper sediment layers. The model was further applied to predict rates of hydrate accumulation in Sakhalin slope sediments. It showed that only up to 0.3% of the pore space is occupied by gas hydrates formed via organic matter degradation within the HSZ. Gas bubble ascent may, however, significantly increase the total amount of hydrate in these deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Along the erosive convergent margin off Costa Rica a large number of mound-shaped structures exist built by mud diapirism or mud volcanism. One of these, Mound 12, an intermittently active mud volcano, currently emits large amounts of aqueous dissolved species and water. Chemosynthetic vent communities, authigenic carbonates, and methane plumes in the water column are manifestations of that activity. Benthic flux measurements were obtained by a video-guided Benthic Chamber Lander (BCL) deployed at a vent site located in the most active part of Mound 12. The lander was equipped with 4 independent chambers covering adjacent areas of the seafloor. Benthic fluxes were recorded by repeated sampling of the enclosed bottom waters while the underlying surface sediments were recovered with the lander after a deployment time of one day. One of the chambers was placed directly in the centre of an active vent marked by the occurrence of a bacterial mat while the other chambers were located at the fringe of the same vent system at a lateral distance of only 40 cm. A transport-reaction model was developed and applied to describe the concentration profiles in the pore water of the recovered surface sediments and the temporal evolution of the enclosed bottom water. Repeated model runs revealed that the best fit to the pore water and benthic chamber data is obtained with a flow velocity of 10 cm yr− 1 at the centre of the vent. The flux rates to the bottom water are strongly modified by the benthic turnover (benthic filter). The methane flux from below at the bacterial mat site is as high as 1032 μmol cm− 2 yr− 1, out of which 588 μmol cm− 2 yr− 1 is oxidised in the surface sediments by microbial consortia using sulphate as terminal electron acceptor and 440 μmol cm− 2 yr− 1 are seeping into the overlaying bottom water. Sulphide is transported to the surface by ascending fluids (238 μmol cm− 2 yr− 1) and is formed within the surface sediment by the anaerobic oxidation of methane (AOM, 588 μmol cm− 2 yr− 1). However, sulphide is not released into the bottom water but completely oxidized by oxygen and nitrate at the sediment/water interface. The oxygen and nitrate fluxes into the sediment are high (781 and 700 μmol cm− 2 yr− 1, respectively) and are mainly driven by the microbial oxidation of sulphide. Benthic fluxes were much lower in the other chambers placed in the fringe of the vent system. Thus, methane and oxygen fluxes of only 28 and 89 μmol cm− 2 yr− 1, respectively were recorded in one of these chambers. Our study shows that the aerobic oxidation of methane is much less efficient than the anaerobic oxidation of methane so that methane which is not oxidized within the sediment by AOM is almost completely released into the bottom water. Hence, anaerobic rather than aerobic methane oxidation plays the major role in the regulation of benthic methane fluxes. Moreover, we demonstrate that methane and oxygen fluxes at cold vent sites may vary up to 3 orders of magnitude over a lateral distance of only 40 cm indicating an extreme focussing of fluid flow and methane release at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...