GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (12)
  • 2005-2009  (4)
  • 1990-1994  (8)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 21 . pp. 1271-1289.
    Publication Date: 2020-08-04
    Description: A high-resolution model of the wind-driven and thermohaline circulation in the North and equatorial Atlantic Ocean is used to study the structure and variability of the boundary current system at 26°N, including the Florida Current, the Antilles Current, and the Deep Western Boundary Current (DWBC). The model was developed by Bryan and Holland as a Community Modeling Effort of the World Ocean Circulation Experiment. Subsequent experiments have been performed at IfM Kiel, with different friction coefficients, and different climatologies of monthly mean wind stress: Hellerman–Rosenstein (HR) and Isemer–Hasse (IH). The southward volume transports in the upper 1000 m of the interior Atlantic, at 26°N, are 25.0 Sv (Sv ≡ 106m3s−1) for HR, and 34.9 Sv for IH forcing, in good agreement with the transport from the integrated Sverdrup balance at this latitude (23.9 Sv for HR, 35.6 Sv for IH). The return flow of this wind-driven transport, plus the southward transport of the DWBC (6–8 Sv), is partitioned between the Florida Current and Antilles Current. With HR forcing, the transport through the Straits of Florida is 23.2 Sv; this increases to 29.1 Sv when the wind stresses of IH are used. The annual variation of the simulated Florida Current is very similar to previous, coarse-resolution models when using the same wind-stress climatology (HR); the annual range (3.4 Sv) obtained with HR forcing is strongly enhanced (6.3 Sv) with IH forcing. The meridional heat transport at 26°N, zonally integrated across the basin, is in phase with the Florida Current; its annual range increases from 0.44 PW (HR) to 0.80 PW (IH). The annual signal east of the Bahamas is masked by strong transport fluctuations on a time scale of O(100 days), caused by an instability of the Antilles Current. By averaging over several model years, an annual cycle is extracted, which is in phase with the wind stress curl over the western part of the basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 2306-2320.
    Publication Date: 2018-04-05
    Description: To avoid an explicit simulation of the overflows across the Greenland-Scotland ridge, many models of the large-scale ocean circulation seek to include the net effect of the inflowing dense water masses by restoring temperature and salinity near the ridge to observed conditions. In this paper the authors examine the effect of different datasets for the northern restoring condition in two versions, eddy resolving and non-eddy resolving, of the model of the North and equatorial Atlantic that has been developed in recent years as a Community Modeling Effort for WOCE. It is shown that the use of smoothed climatological fields of temperature and salinity south of the Denmark Strait leads to strong deficiencies in the simulation of the deep flow field in the basin. A switch to actual hydrographic data from the Denmark Strait ignites a rapid dynamic response throughout the North Atlantic, affecting the transport and vertical structure of the deep western boundary current and, by virtue of the JEBAR efffect, the transport of the horizontal gyres. Meridional overturning and northward heat transport too weak in the cases with climatological boundary conditions, increase to more realistic levels in the subtropical North Atlantic. The initial response to switches in the high-latitude thermohaline forcing is mediated by fast waves along the westurn boundary, leading to changes in the deep western boundary current in low latitudes after about two years in the non-eddy-resolving cast. The initial timescale depends on the horizontal grid spacing of the model; in the high-resolution case, the first signal reaches the equator in a few months. The adjustment to a new, dynamic quasi equilibrium involves Kelvin waves along the equator and Rossby wave in the interior and is attained in less than two decades throughout the North Atlantic. It is suggested that these fast dynamic adjustment processes could play an important role in possible fluctuations of the thermohaline circulation, or transitions between different equilibrium states of the coupled ocean–atmosphere system, and may have determined the timescale of the observed climatic transitions before and during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 326-344.
    Publication Date: 2018-04-05
    Description: Global mean and eddy fields from a four-year experiment with a 1/6° × 1/5° horizontal resolution implementation of the CME North Atlantic model are presented. The time-averaged wind-driven and thermohaline circulation in the model is compared to the results of a 1/3° × 2/5° model run in very similar configuration. In general, the higher resolution results are found to confirm that the resolution of previous CME experiments is sufficient to describe many features of the large-scale circulation and water mass distribution quite well. While the increased resolution does not lead to large changes in the mean flow patterns, the variability in the model is enhanced significantly. On the other hand, however, not all aspects of the circulation have improved with resolution. The Azores Current Frontal Zone with its variability in the eastern basin is still represented very poorly. Particular attention is also directed toward the unrealistic stationary anticyclones north of Cape Hatteras and in the Gulf of Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 . pp. 361-381.
    Publication Date: 2020-08-04
    Description: A primitive equation model of an idealized ocean basin, driven by simple, study wind and buoyancy forcing at the surface, is used to study the dynamics of mesoscale eddies. Model statistics of a six-year integration using a fine grid (1/6° × 0.2°), with reduced coefficients of horizontal friction, are compared to those using a coarser grid (1/3° × 0.4°), but otherwise identical configuration. Eddy generation in both model cases is primarily due to the release of mean potential energy by baroclinic instability. Horizontal Reynolds stresses become significant near the midlatitude jet of the fine-grid case, with a tendency for preferred energy transfers from the eddies to the mean flow. Using the finer resolution, eddy kinetic energy nearly doubles at the surface of the subtropical gyre, and increases by factors of 3–4 over the jet region and in higher latitudes. The spatial characteristics of the mesoscale fluctuations are examined by calculating zonal wavenumber spectra and velocity autocorrelation functions. With the higher resolution, the dominant eddy scale remains approximately the same in the subtropical gyre but decreases by a factor of 2 in the subpolar areas. The wavenumber spectra indicate a strong influence of the model friction in the coarse-grid case, especially in higher latitudes. Using the coarse grid, there is almost no separation between the energetic eddy scale and the scale where friction begins to dominate, leading to steep spectra beyond the cutoff wavenumber. Using the finer resolution an inertial subrange with a k−3 power law begins to emerge in all model regions outside the equatorial belt. Despite the large increase of eddy intensity in the fine-grid model, effects on the mean northward transport of heat are negligible. Strong eddy fluxes of heat across the midlatitude jet are almost exactly compensated by changes of the heat transport due to the mean flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (18). pp. 4631-4637.
    Publication Date: 2020-08-04
    Description: Analyses of ocean observations and model simulations suggest that there have been considerable changes in the thermohaline circulation (THC) during the last century. These changes are likely to be the result of natural multidecadal climate variability and are driven by low-frequency variations of the North Atlantic Oscillation (NAO) through changes in Labrador Sea convection. Indications of a sustained THC weakening are not seen during the last few decades. Instead, a strengthening since the 1980s is observed. The combined assessment of ocean hydrography data and model results indicates that the expected anthropogenic weakening of the THC will remain within the range of natural variability during the next several decades
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 37 (4). pp. 946-961.
    Publication Date: 2020-08-04
    Description: A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-04
    Description: The monthly mean wind stress climatology of Hellerman and Rosenstein (HR) is compared with the climatology of Isemer and Hasse (IH), which represents a version of the Bunker atlas (BU) for the North Atlantic based on revised parameterizations. The drag coefficients adopted by IH are 21% smaller than the values of BU and HR, and the calculation of wind speed from marine estimates of Beaufort force (Bft) is based on a revised Beaufort equivalent scale similar to the scientific scale recommended by WMO. The latter choice significantly increases wind speed below Bft 8, and effectively counteracts the reduction of the drag coefficients. Comparing the IH stresses with HR reveals substantially enhanced magnitudes in the trade wind region throughout the year. At 15°N the mean easterly stress increases from about 0.9 (HR) to about 1.2 dyn cm−1 (IH). Annual mean differences are smaller in the region of the westerlies. In winter, the effect due to the reduced drag coefficient dominates and leads to smaller stress values in IH; during summer season the revision of the Beaufort equivalents is more effective and leads to increased stresses. Implications of the different wind stress climatologies for forcing the large-scale ocean circulation are discussed by means of the Sverdrup transport streamfunction (ψs): Throughout the subtropical gyre a significant intensification of ψs takes place with IH. At 27°N, differences of more than 10 Sv (1 Sv ≡ 106 m3 s−1) are found near the western boundary. Differences in the seasonality of ψs are more pronounced in near-equatorial regions where IH increase the amplitude of the annual cycle by about 50%. An eddy-resolving model of the North Atlantic circulation is used to examine the effect of the different wind stresses on the seasonal cycle of the Florida Current. The transport predicted by the numerical model is in much better agreement with observations when the circulation is forced by IH than by HR, regarding both the annual mean (29.1 Sv vs 23.2 Sv) and the seasonal range (6.3 Sv vs 3.4 Sv).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-04
    Description: The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–1/12°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 91-107.
    Publication Date: 2020-08-04
    Description: The annual cycle of meridional heat transport in the North and equatorial Atlantic Ocean is studied by means of the high-resolution numerical model that had been developed in recent years as a Community Modeling Effort for the World Ocean Circulation Experiment. Similar to previous model studies, there is a winter maximum in northward heat transport in the equatorial Atlantic and a summer maximum in midlatitudes. The seasonal variation in heat transport in the equatorial Atlantic, with a maximum near 8°N, is associated with the out-of-phase changes in heat content to the north and south of that latitude in connection with the seasonal reversal of the North Equatorial Countercurrent. The amplitude of the heat transport variation at 8°N depends on model resolution: forcing with the monthly mean wind stresses of Hellerman–Rosenstein (HR) gives an annual range of 2.1 PW in the case of a 1/3° meridional grid, and 1.7 PW in the case of a 1° grid, compared to 1.4 PW in a previous 2° model. Forcing with the wind stresses of Isemer–Hasse (IH) gives 2.5 PW in the 1/3° and 2.2 PW in the 1° model case. The annual range of heat transport in the subtropical North Atlantic is much less dependent on resolution but sensitive to the wind stress: it increases from 0.5 PW in the case of HR forcing to almost 0.8 PW with IH forcing. The annual cycle of heat transport can be understood in terms of wind-driven variations in the meridional overturning; variations in horizontal gyre transport have only little effect both in the equatorial and in the subtropical Atlantic. In all model solutions the seasonal variations in the near-surface meridional Ekman transport are associated with deep seasonal overturning cells. The weak shear of the deep response suggests that the large variations in heat transport on seasonal and shorter time scales should be of little consequence for observational estimates of mean oceanic heat transports relying on one-time hydrographic surveys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...