GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (6)
  • 2005-2009  (1)
  • 2000-2004  (5)
Document type
Source
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2023-07-09
    Keywords: Calculated; CENSOR; Ciliates; Climate variability and El Niño Southern Oscillation; Counting; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Dinoflagellates, athecate; Dinoflagellates, thecate; Elevation of event; Event label; Flagellates; Geminis_I; Geminis_II; Geminis_III; Geminis_IV; Latitude of event; Longitude of event; Mejillones_Bay; Mejillones Bay, Chile; MULT; Multiple investigations; Nanoplankton, production as carbon; Phytoplankton, production as carbon; Picoplankton, production as carbon; Time-series station
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Keywords: Appendicularia; Appendicularia, grazing rate per individual; Calculated; Carbon, total, flux; CENSOR; Chaetognatha; Chlorophyll a; Chlorophyll a, areal concentration; Climate variability and El Niño Southern Oscillation; Copepoda; Copepoda grazing rate per individual; Copepoda ingestion rate per individual; Counting; Ctenophora; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Elevation of event; Euphausiacea; Euphausiacea grazing rate per individual; Event label; Geminis_I; Geminis_II; Geminis_III; Geminis_IV; Latitude of event; Longitude of event; Mejillones_Bay; Mejillones Bay, Chile; MULT; Multiple investigations; Time-series station
    Type: Dataset
    Format: text/tab-separated-values, 65 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marubini, Francesca; Ferrier-Pagès, Christine; Furla, Paola; Allemand, Denis (2008): Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs, 27(3), 491-499, https://doi.org/10.1007/s00338-008-0375-6
    Publication Date: 2024-03-15
    Description: The decrease in the saturation state of seawater, following seawater acidification, is believed to be the main factor leading to a decrease in the calcification of marine organisms. To provide a physiological explanation for this phenomenon, the effect of seawater acidification was studied on the calcification and photosynthesis of the scleractinian tropical coral Stylophora pistillata. Coral nubbins were incubated for 8 days at three different pH (7.6, 8.0, and 8.2). To differentiate between the effects of the various components of the carbonate chemistry (pH, CO32, HCO3, CO2), tanks were also maintained under similar pH, but with 2-mM HCO3 added to the seawater. The addition of 2-mM bicarbonate significantly increased the photosynthesis in S. pistillata, suggesting carbon-limited conditions. Conversely, photosynthesis was insensitive to changes in pH and pCO2. Seawater acidification decreased coral calcification by ca. 0.1-mg CaCO3 g-1 d-1 for a decrease of 0.1 pH units. This correlation suggested that seawater acidification affected coral calcification by decreasing the availability of the CO32 substrate for calcification. However, the decrease in coral calcification could also be attributed either to a decrease in extra- or intracellular pH or to a change in the buffering capacity of the medium, impairing supply of CO32 from HCO3.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Buoyant weighing technique according to Davies (1989); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Infrared gas analyzer (LI-COR 196SA); Laboratory experiment; Marubini_etal_08; Measured; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Radiation, photosynthetically active; Salinity; Single species; Stylophora pistillata; Temperate; Temperature, water; Titration potentiometric (Metler-Toledo)
    Type: Dataset
    Format: text/tab-separated-values, 102 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); DATE/TIME; EPOCA; Estimated; Estimated by regressing O2 against time; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Laboratory strains; Measured; PAR sensor LI-1000, LI-COR Inc.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Single species; Stylophora pistillata; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1600 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Keywords: Acropora verweyi; Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Galaxea fascicularis; Laboratory experiment; Marubini_etal_03; Measured; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pavona cactus; pH; Salinity; Single species; Temperate; Temperature, water; Titration potentiometric (Metler-Toledo); Turbinaria reniformis
    Type: Dataset
    Format: text/tab-separated-values, 90 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated from skeletal dry weight; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Counting; Density, cell-specific; EPOCA; Estimated; Estimated by regressing O2 against time; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Measured; Net photosynthesis rate; PAR sensor LI-1000, LI-COR Inc.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen; Reynaud_etal_03; Salinity; Single species; Stylophora pistillata; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 76 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...