GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (20)
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (57 Blatt = 2,3 MB) , Illustrationen, Diagramme
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (63 Seiten = 2,6 MB) , Illustrationen, Graphen, Karten , 1 Online-Ressource (0,13 MB)
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m−2 yr−1 and was strongest in the dry season (July–October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Following up on previous investigations on the stress resistance of corals, this study assessed the trophic plasticity of the coral Stylophora subseriata in the Spermonde Archipelago (Indonesia) along an eutrophication gradient. Trophic plasticity was assessed in terms of lipid content and fatty acid composition in the holobiont relative to its plankton (50-300 μm) food as well as the zooxanthellae density, lipid, FA and chlorophyll a content. A cross-transplantation experiment was carried out for 1.5 months in order to assess the trophic potential of corals. Corals, which live in the eutrophied nearshore area showed higher zooxanthellae and chlorophyll a values and higher amounts of the dinoflagellate biomarker FA 18:4n-3. Their lipid contents were maintained at similar to levels from specimens further away from the anthropogenic impact source going up to 14.9 ± 0.9 %. A similarity percentage analysis of the groups holobiont, zooxanthellae and plankton 〉55 μm found that differences between the FA composition of the holobiont and zooxanthellae symbionts were more distinct in the site closer to the shore, thus heterotrophic feeding became more important. Transplanted corals attained very similar zooxanthellae, chlorophyll a and lipid values at all sites as the specimens originating from those sites, which indicates a high potential for trophic plasticity in the case of a change in food sources, which makes this species competitive and resistant to eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The Saudi Arabian Red Sea coast is characterized by a strong environmental gradient from north (28.5°N) to south (16.5°N) with challenging conditions for coral growth particularly in the south (high temperature and nutrient input). We investigated whether assemblies of reef-building corals and the distribution of functional groups follow a latitudinal pattern in the Red Sea, and whether these changes affect the assembly structure of coral associated organisms (e.g. fishes). Functional groups were defined based on life-history traits and functional role. 13 reefs along the north-south gradient, including 5 potentially polluted reefs were investigated. Results showed a substantially weaker latitudinal shift in the assembly structure of coral communities than of fishes communities and of other benthic reef taxa. Competitive fast growing branching and tabular species (mainly Acropora), as well as rather stresstolerant slow growing bulky species (e.g. Porites, Goniastrea, Favites, Favia) were fairly evenly distributed along the north-south axis despite strong changes of environmental conditions. This seems on the one hand attributable to the high species richness within a given functional group (functional redundancy) and on the other hand to a high acclimatization / adaptation potential of some Red Sea coral species. The prime ecosystem service of the coral community, the provision of a habitat complex, is thereby maintained throughout the gradient. In contrast to the coral community, the assembly of the fish community shifts along the environmental gradient with higher abundances of small wrasses and butterfly fishes in the north, and overall higher abundance of fishes including large fishes in the south. This shift seems linked to higher food availability in the south. Altered assembly structures of coral communities were found in reefs close to a source of pollution with either an increased relative abundance of stresstolerant species or a general decrease of coral abundance, latter case accompanied by a substantial reduction in fish abundance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-12
    Description: Biofilms play an important role as a settlement cue for invertebrate larvae and significantly contribute to the nutrient turnover in aquatic ecosystems. Nevertheless, little is known about how biofilm community structure generally responds to environmental changes. This study aimed to identify patterns of bacterial dynamics in coral reef biofilms in response to associated macrofouling community structure, microhabitat (exposed vs. sheltered), seasonality, and eutrophication. Settlement tiles were deployed at four reefs along a cross-shelf eutrophication gradient and were exchanged every 4 months over 20 months. The fouling community composition on the tiles was recorded and the bacterial community structure was assessed with the community fingerprinting technique Automated Ribosomal Intergenic Spacer Analysis (ARISA). Bacterial operational taxonomic unit (OTU) number was higher on exposed tiles, where the fouling community was homogenous and algae-dominated, than in sheltered habitats, which were occupied by a variety of filter feeders. Furthermore, OTU number was also highest in eutrophied near-shore reefs, while seasonal variations in community structure were most pronounced in the oligotrophic mid-shelf reef. In contrast, the macrofouling community structure did not change significantly with seasons. Changes in bacterial community patterns were mostly affected by microhabitat, seasonal and anthropogenically derived changes in nutrient availability, and to a lesser extent by changes in the macrofouling community structure. Path analysis revealed a complex interplay of various environmental and biological factors explaining the spatial and temporal variations in bacterial biofilm communities under natural conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: In situ incubation experiments, complemented by tissue analyses, were conducted with the coral Porites lutea at four sites featuring contrasting environmental conditions: two shallow (3m) reefs in Spermonde Archi-pelago (Indonesia) subjected to coastal pollution (Lae Lae, LL) and oligotrophic waters (Bonebatang, BBA), respectively; a deep (20m, KR-D) and a shallow (7m, KR-S) reef at off-shore Ko Racha (KR) in the Andaman Sea (Thailand) subjected to pulsed upwelling. Mean tem-perature varied only little (29-30°C). While most tis-sue parameters responded to light and nutrient changes as ex-pected, metabolic rates revealed surprising patterns: 3-fold elevated calcification occurred at KR-S compared to all other sites despite reduced gross photosynthesis. Fur-ther-more, equal photosynthesis occurred in 7 and 20m depth at KR, despite a 5-fold reduction in light intensity, which could not be solely ascribed to photo-acclimation processes, such as increased cell-specific chlorophyll a in 20m depth. These findings support the notion of a highly flexible species and indicate that this might partly be ascribed to a strong variation in the internal turnover of oxygen and nutrients between coral host and zooxanthellae, meaning a strong variation in the rates of energy ac-quisition. Those differences are particularly difficult to determine in situ, but require greater attention in the future in order to enhance our understanding of metabolic pro-cesses and acclimatization abilities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-22
    Description: Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Other] In: Kinderuni Wyk auf Föhr, 25.08.2011, Wyk auf Föhr, Germany .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...