GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-08
    Keywords: AMT17/03; AMT17/04; AMT17/05; AMT17/06; AMT17/08; AMT17/10; Atlantic; Calculated after Luo et al. (2012); DEPTH, water; Diazotrophs, total biomass as carbon; Event label; Iron; Latitude of event; Light microscope; Longitude of event; MAREDAT_Diazotrophs_Collection; Nitrate; Phosphate; Salinity; Temperature, water; Trichodesmium, biomass as carbon; Trichodesmium, carbon per trichome; Trichodesmium abundance, free trichomes; Trichodesmium abundance, total
    Type: Dataset
    Format: text/tab-separated-values, 55 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-08
    Keywords: AMT17/01; AMT17/02; AMT17/03; AMT17/04; AMT17/05; AMT17/06; AMT17/07; AMT17/08; AMT17/09; AMT17/10; Atlantic; Calculated after Luo et al. (2012); Date/Time of event; DEPTH, water; Event label; Iron; Latitude of event; Longitude of event; MAREDAT_Diazotrophs_Collection; Nitrate; Nitrogen Fixation (C2H2 Reduction); Nitrogen fixation rate, total; Nitrogen fixation rate, whole seawater; Phosphate; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 275 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (3). pp. 942-947.
    Publication Date: 2021-04-23
    Description: Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid–ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was rich in Fe(III) colloids (0.02–0.2 µm; 46% of total Fe), contributing to a fraction of hydrothermal Fe that was stable in ocean water. Iron(III) colloids from island arc calderas may be transferred into surrounding waters (generally 0–1500 m depth) by ocean currents, thereby potentially stimulating surface ocean primary productivity. Hydrothermal Fe oxyhydroxide particles (〉0.2 µm) were also pervasive in the studied caldera and contained high concentrations of oxyanions of phosphorus (P), vanadium (V), arsenic (As), and manganese (Mn). Hydrothermal island arcs may be responsible for 〉 50% of global hydrothermal P scavenging and 〉 40% V scavenging, despite representing 〈10% of global hydrothermal fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-21
    Description: Concentrations of heme b, the iron-containing component of b-type hemoproteins, ranged from 〈 0.4 to 5.3 pM with an average of 1.18 ± 0.8 pM (± 1σ; n = 86) in the Iceland Basin (IB), from 〈 0.4 to 19.1 pM with an average of 2.24 ± 1.67 pM (n = 269) in the tropical northeast Atlantic (TNA) and from 0.6 to 21 pM with an average of 5.1 ± 4.8 pM (n = 34) in the Scotia Sea (SS). Heme b concentrations were enhanced in the photic zone and decreased with depth. Heme b concentrations correlated positively with chlorophyll a (chl a) in the TNA (r = 0.41, p 〈 0.01, n = 269). Heme b did not correlate with chl a in the IB or SS. In the IB and SS, stations with high-chlorophyll and low-nutrient (Fe and/or Si) concentrations exhibited low heme b concentrations relative to particulate organic carbon (〈 0.1 μmol mol−1), and high chl a:heme b ratios (〉 500). High chl a:heme b ratios resulted from relative decreases in heme b, suggesting proteins such as cytochrome b6f, the core complex of photosystem II, and eukaryotic nitrate reductase were depleted relative to proteins containing chlorophyll such as the eukaryotic light-harvesting antenna. Relative variations in heme b, particulate organic carbon, and chl a can thus be indicative of a physiological response of the phytoplankton community to the prevailing growth conditions, within the context of large-scale changes in phytoplankton community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-22
    Description: During the winter of 2006 we measured nifH gene abundances, dinitrogen (N2) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 106 L−1 nifH gene copies, unicellular group A cyanobacteria with up to 105 L−1 nifH gene copies and gamma A proteobacteria with up to 104 L−1 nifH gene copies. N2 fixation rates were low and ranged between 0.032–1.28 nmol N L−1 d−1 with a mean of 0.30±0.29 nmol N L−1 d−1 (1σ, n = 65). CO2-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2±3.2 in surface waters. Nevertheless, N2 fixation rates contributed only 0.55±0.87% (range 0.03–5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N2 fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N2 fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N2 fixation in the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09S16, doi:10.1029/2004JC002601.
    Description: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (〉60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate 〈 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.
    Description: This research was supported by the European Union through programs CARUSO (1998– 2001), IRONAGES (1999 –2003), and COMET (2000–2003); the Netherlands- Bremen Oceanography program NEBROC-1; and the Netherlands Organization for Research NWO through the Netherlands Antarctic Program project FePath. Both the U.S. National Science Foundation and the U.S. Department of Energy provided significant support for the SOFeX program. M.R.L. acknowledges the U.S. National Science Foundation for support of IronEx and SOFeX projects and related studies (OCE-9912230, -9911765, and -0322074).
    Keywords: Iron ; Fertilization ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...