GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Document type
Years
Year
  • 1
    Publication Date: 2019-07-17
    Description: The systematic position of Amphidoma caudata Halldal within the genus Amphidoma has remained uncertain as a result of its plate formula and the absence of molecular phylogenetic data. Also, this thecate dinoflagellate taxon has been used to designate two distinct morphotypes. The present study aims to clarify the generic affiliation of Amphidoma caudata and the taxonomic value of two different morphotypes M1 and M2. The new examination of the plate formula using SEM showed that it was the same for both morphotypes and that it corresponded to the tabulation of the recent erected genus Azadinium Elbra¨chter et Tillmann. Morphometric analysis, using cell size, length of apical projection in conjunction with the cell length, and the ratio of horn and spine showed that M1 and M2 formed two distinct groups. These results were supported by a molecular approach, revealing notable differences in the sequences of LSU rDNA and ITS region between these two morphotypes. Phylogenetic analyses inferred either from LSU and combined SSU, ITS region and COI data positioned M1 and M2 in a sister cluster of Azadinium species while Amphidoma languida Tillmann, Salas et Elbra¨chter, the only species of Amphidoma for which sequence data were available, was situated in a basal position of the Azadinium clade. Thus, we propose the transfer of Amphidoma caudata to the genus Azadinium and, consequently, the rehabilitation of the original tabulation of the genus Amphidoma Stein. To discriminate the two morphotypes, we propose a rank of variety with the following designations: Azadinium caudatum var. caudatum and Azadinium caudatum var. margalefii.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-11
    Description: Some species of planktonic Azadinium produce azaspiracids (AZAs), a group of lipophilic phycotoxins causing human poisoning after mussel consumption. We describe three new species from the North Atlantic, all of which shared the same Kofoidean plate pattern characteristic for Azadinium: Po, cp, X, 4´, 3a, 6´´, 6C, 5S, 6´´´, 2´´´´. Azadinium trinitatum sp. nov. was mainly characterized by the presence of an antapical spine and by the position of the ventral pore at the left distal end of the pore plate in a cavity of plate 1´. Azadinium cuneatum sp. nov. had a conspicuously formed first apical plate, which was asymmetrically elongated and tapered on its left lateral side with a ventral pore located at the tip of this elongated 1´ plate. Azadinium concinnum sp. nov. was of particular small size (〈 10 µm) and characterized by an anteriorly elongated anterior sulcal plate and by large and symmetric precingular plates. The ventral pore was located inside the apical pore plate on the cells’ right lateral side. Molecular phylogenetics as inferred from concatenated SSU, ITS, and LSU sequence data supported the distinctiveness of the three new species. None of the new species produced any known AZAs in measurable amounts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Harmful Algae, ELSEVIER SCIENCE BV, 20, pp. 142-155, ISSN: 1568-9883
    Publication Date: 2019-07-17
    Description: Azadinium is a dinophycean genus capable of producing azaspiracids (AZAs), a recently discovered group of lipophilic phycotoxins causing human intoxication via mussel consumption. Although initially described from the North Sea, the genus currently consisting of four described species is probably distributed worldwide. Here we report on Azadinium from the Shetland Islands, which are located in the northernmost part of the North Sea and are largely influenced by the Atlantic Ocean. Two strains of Azadinium were isolated from a single water sample. One strain was identified as Azadinium spinosum based on morphology and sequence data and had an AZA cell quota of about 20 fg per cell, similar to all other described strains of the species. The toxin profile consisted of AZA-1 and AZA-2 in a 2.3:1 ratio and a yet undescribed AZA of 715 Da. The other strain represents a new species and is here described as Azadinium polongum sp. nov. Like A. spinosum, but different to Azadinium obesum and Azadinium poporum, A. polongum has an antapical spine. A. polongum differs from A. spinosum by an elongated shape of the pore plate (Po), and X-plate, the location of the ventral pore, and the absence of a distinct pyrenoid with starch sheath. Molecular analysis based on SSU, LSU, and ITS sequencing supported separation of A. polongum at the species level. Detailed LC–MS analysis showed that A. polongum does not produce any known AZAs in measureable amounts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...