GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L03402, doi:10.1029/2007GL032837.
    Description: Arctic rivers transport huge quantities of dissolved organic carbon (DOC) to the Arctic Ocean. The prevailing paradigm is that DOC in arctic rivers is refractory and therefore of little significance for the biogeochemistry of the Arctic Ocean. We show that there is substantial seasonal variability in the lability of DOC transported by Alaskan rivers to the Arctic Ocean: little DOC is lost during incubations of samples collected during summer, but substantial losses (20–40%) occur during incubations of samples collected during the spring freshet when the majority of the annual DOC flux occurs. We speculate that restricting sampling to summer may have biased past studies. If so, then fluvial inputs of DOC to the Arctic Ocean may have a much larger influence on coastal ocean biogeochemistry than previously realized, and reconsideration of the role of terrigenous DOC on carbon, microbial, and food-web dynamics on the arctic shelf will be warranted.
    Description: This material is based on work supported by the National Science Foundation under grant numbers OPP-0436106, OPP- 0519840, and EAR-0403962, and is a contribution to the Study of Environmental Arctic Change (SEARCH).
    Keywords: DOC ; Arctic ; Rivers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L18606, doi:10.1029/2008GL035007.
    Description: We present new flow-weighted data for δ 18OH2O, dissolved organic carbon (DOC), dissolved barium and total alkalinity from the six largest Arctic rivers: the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie. These data, which can be used to trace runoff, are based upon coordinated collections between 2003 and 2006 that were temporally distributed to capture linked seasonal dynamics of river flow and tracer values. Individual samples indicate significant variation in the contributions each river makes to the Arctic Ocean. Use of these new flow-weighted estimates should reduce uncertainties in the analysis of freshwater transport and fate in the upper Arctic Ocean, including the links to North Atlantic thermohaline circulation, as well as regional water mass analysis. Additional improvements should also be possible for assessing the mineralization rate of the globally significant flux of terrigenous DOC contributed to the Arctic Ocean by these major rivers.
    Description: Supported by the U.S. National Science Foundation (OPP-0229302), the U.S. Geological Survey and the Water Resources Division of Canada’s Department of Indian Affairs and Northern Development.
    Keywords: Arctic rivers ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S60, doi:10.1029/2006JG000371.
    Description: Export of nitrate and dissolved organic carbon (DOC) from the upper Kuparuk River between the late 1970s and early 2000s was evaluated using long-term ecological research (LTER) data in combination with solute flux and catchment hydrology models. The USGS Load Estimator (LOADEST) was used to calculate June–August export from 1978 forward. LOADEST was then coupled with a catchment-based land surface model (CLSM) to estimate total annual export from 1991 to 2001. Simulations using the LOADEST/CLSM combination indicate that annual nitrate export from the upper Kuparuk River increased by ~5 fold and annual DOC export decreased by about one half from 1991 to 2001. The decrease in DOC export was focused in May and was primarily attributed to a decrease in river discharge. In contrast, increased nitrate export was evident from May to September and was primarily attributed to increased nitrate concentrations. Increased nitrate concentrations are evident across a wide range of discharge conditions, indicating that higher values do not simply reflect lower discharge in recent years but a significant shift to higher concentration per unit discharge. Nitrate concentrations remained elevated after 2001. However, extraordinarily low discharge during June 2004 and June–August 2005 outweighed the influence of higher concentrations in determining export during these years. The mechanism responsible for the recent increase in nitrate concentrations is uncertain but may relate to changes in soils and vegetation associated with regional warming. While changes in nitrate and DOC export from arctic rivers reflect changes in terrestrial ecosystems, they also have significant implications for Arctic Ocean ecosystems.
    Description: This work was supported by the Arctic System Science Program of the National Science Foundation (OPP- 0436118) and by NSF funding for the Arctic LTER through a series of grants from 1987 to present.
    Keywords: Nitrate ; DOC ; Arctic ; Rivers ; Change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): D18102, doi:10.1029/2004JD004583.
    Description: Discharge from Eurasian rivers to the Arctic Ocean has increased significantly in recent decades, but the reason for this trend remains unclear. Increased net atmospheric moisture transport from lower to higher latitudes in a warming climate has been identified as one potential mechanism. However, uncertainty associated with estimates of precipitation in the Arctic makes it difficult to confirm whether or not this mechanism is responsible for the change in discharge. Three alternative mechanisms are dam construction and operation, permafrost thaw, and increasing forest fires. Here we evaluate the potential influence of these three mechanisms on changes in discharge from the six largest Eurasian Arctic rivers (Yenisey, Ob', Lena, Kolyma, Pechora, and Severnaya Dvina) between 1936 and 1999. Comprehensive discharge records made it possible to evaluate the influence of dams directly. Data on permafrost thaw and fires in the watersheds of the Eurasian Arctic rivers are more limited. We therefore use a combination of data and modeling scenarios to explore the potential of these two mechanisms as drivers of increasing discharge. Dams have dramatically altered the seasonality of discharge but are not responsible for increases in annual values. Both thawing of permafrost and increased fires may have contributed to changes in discharge, but neither can be considered a major driver. Cumulative thaw depths required to produce the observed increases in discharge are unreasonable: Even if all of the water from thawing permafrost were converted to discharge, a minimum of 4 m thawed evenly across the combined permafrost area of the six major Eurasian Arctic watersheds would have been required. Similarly, sensitivity analysis shows that the increases in fires that would have been necessary to drive the changes in discharge are unrealistic. Of the potential drivers considered here, increasing northward transport of moisture as a result of global warming remains the most viable explanation for the observed increases in Eurasian Arctic river discharge.
    Description: This research was funded by the Arctic System Science Program of the National Science Foundation (NSF-OPP- 0229302).
    Keywords: Arctic river discharge ; Global change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
    Description: A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
    Description: This study has been carried out as part of ECCO2 and SASS (Synthesis of the Arctic System Science) projects funded by NASA and NSF, respectively. MM and MJF are grateful for support from the National Science Foundation (ARC-0531119 and ARC-0806229) for financial support. MM also acknowledges NASA for providing computer time, the use of the computing facilities at NAS center and also the Scripps post-doctoral program for further financial support that helped to complete the manuscript. RMK also acknowledges NOAA for support (NA08OAR4310820 and NA08OAR4320752).
    Description: 2012-06-15
    Keywords: Air-sea gas exchange ; Biogeochemical cycles ; Land-ocean coupling ; Numerical modeling ; Ocean carbon cycle ; Polar oceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 35 (2012): 369-382, doi:10.1007/s12237-011-9386-6.
    Description: River inputs of nutrients and organic matter impact the biogeochemistry of arctic estuaries and the Arctic Ocean as a whole, yet there is considerable uncertainty about the magnitude of fluvial fluxes at the pan-arctic scale. Samples from the six largest arctic rivers, with a combined watershed area of 11.3 x 106 km2, have revealed strong seasonal variations in constituent concentrations and fluxes within rivers as well as large differences among the rivers. Specifically, we investigate fluxes of dissolved organic carbon, dissolved organic nitrogen, total dissolved phosphorus, dissolved inorganic nitrogen, nitrate, and silica. This is the first time that seasonal and annual constituent fluxes have been determined using consistent sampling and analytical methods at the pan arctic scale, and consequently provide the best available estimates for constituent flux from land to the Arctic Ocean and surrounding seas. Given the large inputs of river water to the relatively small Arctic Ocean, and the dramatic impacts that climate change is having in the Arctic, it is particularly urgent that we establish the contemporary river fluxes so that we will be able to detect future changes and evaluate the impact of the changes on the biogeochemistry of the receiving coastal and ocean systems.
    Description: This work was supported by the National Science Foundation through grants OPP-0229302, OPP-0519840, OPP-0732522, and OPP-0732944. Additional support was provided by the U. S. Geological Survey (Yukon River) and the Department of Indian and Northern Affairs (Mackenzie River).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB4018, doi:10.1029/2011GB004192.
    Description: A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to larger scale C dynamics within the Arctic system. DIC concentration showed considerable, and synchronous, seasonal variation across these six large Arctic rivers, which have an estimated combined annual DIC flux of 30 Tg C yr−1. By examining the relationship between DIC flux and landscape variables known to regulate riverine DIC, we extrapolate to a DIC flux of 57 ± 9.9 Tg C yr−1for the full pan-arctic basin, and show that DIC export increases with runoff, the extent of carbonate rocks and glacial coverage, but decreases with permafrost extent. This pan-arctic riverine DIC estimate represents 13–15% of the total global DIC flux. The annual flux of selected ions (HCO3−, Na+, Ca2+, Mg2+, Sr2+, and Cl−) from the six largest Arctic rivers confirms that chemical weathering is dominated by inputs from carbonate rocks in the North American watersheds, but points to a more important role for silicate rocks in Siberian watersheds. In the coastal ocean, river water-induced decreases in aragonite saturation (i.e., an ocean acidification effect) appears to be much more pronounced in Siberia than in the North American Arctic, and stronger in the winter and spring than in the late summer. Accounting for seasonal variation in the flux of DIC and other major ions gives a much clearer understanding of the importance of riverine DIC within the broader pan-arctic C cycle.
    Description: Funding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to SET was provided by an NSERC Postdoctoral Fellowship.
    Description: 2013-06-14
    Keywords: Arctic ; Dissolved inorganic carbon ; Ocean acidification ; Permafrost ; River biogeochemistry ; Weathering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.
    Description: Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.
    Description: Funding for this work was provided through NSFOPP- 0229302 and NSF-OPP-0732985.Support to SET was additionally provided by an NSERC Postdoctoral Fellowship.
    Keywords: Arctic Ocean ; Primary Production ; Land–ocean coupling ; Estuarine processes ; Riverine nutrients ; Dissolved organic matter ; Photodegradation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 41 (2005): W01014, doi:10.1029/2004WR003269.
    Description: We measured δ15N signatures of macrophytes and particulate organic matter (POM) in six estuaries and three freshwater ponds of Massachusetts to assess whether the signatures could be used as indicators of the magnitude of land-derived nitrogen loads, concentration of dissolved inorganic nitrogen in the water column, and percentage of N loads contributed by wastewater disposal. The study focused specifically on sites on Cape Cod and Nantucket Island, in the northeastern United States. There was no evidence of seasonal changes in δ15N values of macrophytes or POM. The δ15N values of macrophytes and POM increased as water column dissolved inorganic nitrogen concentrations increased. We found that δ15N of macrophytes, but not of POM, increased as N load increased. The δ15N values of macrophytes and groundwater NO3 tracked the percent of wastewater contribution linearly. This research confirms that δ15N values of macrophytes and NO3 can be excellent indicators of anthropogenic N in aquatic systems.
    Description: This work was supported by funds from the Woods Hole Oceanographic Institution Sea Grant Program, from the Cooperative Institute for Coastal and Estuarine Environmental Technology, from a Massachusetts Department of Environmental Protection grant to Applied Science Associates, Narragansett, Rhode Island, and from a National Oceanic and Atmospheric Administration National Estuarine Research Reserve fellowship and Palmer/McCleod fellowship to K.D.K.
    Keywords: δ15N ; Macrophyte ; Stable isotope ; Wastewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S54, doi:10.1029/2006JG000353.
    Description: Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.
    Description: The authors gratefully acknowledge the National Science Foundation (NSF) for funding this synthesis work. This paper is principally the work of authors funded under the NSF-funded Freshwater Integration (FWI) study.
    Keywords: Arctic ; Freshwater ; System ; Changes ; Impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...