GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-24
    Description: Here we demonstrate the use of reverse titration - competitive ligand exchange-adsorptive cathodic stripping voltammetry (RT-CLE-ACSV) for the analysis of iron (Fe) binding ligands in seawater. In contrast to the forward titration, which examines excess ligands in solution, RT-CLE-ACSV examines the existing Fe-ligand complexes by increasing the concentration of added (electroactive) ligand (1-nitroso-2-naphthol) and analysis of the proportion of Fe bound to the added ligand. The data manipulation allows the accurate characterisation of ligands at equal or lower concentrations than Fe in seawater, and disregards electrochemically inert dissolved Fe such as some colloidal phases. The method is thus superior to the forward titration in environments with high Fe and low ligand concentrations or high concentrations of inert Fe.We validated the technique using the siderophore ligand ferrioxamine B, and observed a stability constant K'Fe3+FoB of 0.74-4.37×1021mol-1, in agreement with previous results. We also successfully analysed samples from coastal waters and a deep ocean hydrothermal plume. Samples from these environments could not be analysed with confidence using the forward titration, highlighting the effectiveness of the RT-CLE-ACSV technique in waters with high concentrations of inert Fe. © 2013 Elsevier B.V.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep-Sea Research Part I-Oceanographic Research Papers, 58 (11). pp. 1049-1059.
    Publication Date: 2017-10-24
    Description: On voyages in the Iceland Basin in 2007 and 2009, we observed low (ca. 0.1nM) total dissolved iron concentrations dFe in surface waters (〈150m), which increased with depth to ca. 0.2-0.9nM. The surface water dFe was low due to low atmospheric Fe inputs combined with biological uptake, with Fe regeneration from microbial degradation of settling biogenic particles supplying dFe at depth. The organic ligand concentrations LT in the surface waters ranged between 0.4 and 0.5nM, with conditional stability constants (logK'FeL) between 22.6 and 22.7. Furthermore, LT was in excess of dFe throughout the water column, and dFe was therefore largely complexed by organic ligands (>99%). The ratio of LT/dFe was used to analyse trends in Fe speciation. Enhanced and variable LT/dFe ratios ranging between 1.6 and 5.8 were observed in surface waters; the ratio decreased with depth to a more constant LT/dFe ratio in deep waters. In the Iceland Basin and Rockall Trough, enhanced LT/dFe ratios in surface waters resulted from decreases in dFe, likely reflecting the conditions of Fe limitation of the phytoplankton community in the surface waters of the Iceland Basin and the high productivity in the Rockall Trough.Below the surface mixed layer, the observed increase in dFe resulted in a decrease of the LT/dFe ratios (1.2-2.6) with depth. This indicated that the Fe binding ligand sites became occupied and even almost saturated at enhanced dFe in the deeper waters. Furthermore, our results showed a quasi-steady state in deep waters between dissolved organic Fe ligands and dFe, reflecting a balance between Fe removal by scavenging and Fe supply by remineralisation of biogenic particles with stabilisation through ligands. © 2011 Elsevier Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-24
    Description: Siderophore type chelates were detected in nutrient enriched, incubated seawater collected from different biogeographical regions of the Atlantic Ocean. Seawater was enriched with glucose and ammonium, glycine (as a source of carbon and nitrogen) or chitin and ammonium at different concentrations and was incubated for up to 3-4. days in the dark. Siderophore type chelates were detected using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) after complexation with Ga. Samples were subsequently analysed by HPLC-electrospray ionisation mass spectrometry (HPLC-ESI-MS) in order to confirm the identity of the known siderophores, and to obtain the pseudo-molecular ions of unknown siderophore type chelates. A total of 22 different siderophore type chelates were resolved in the HPLC-ICP-MS chromatograms. Ten different siderophore type chelates were identified by HPLC-ESI-MS, 3 of which had not previously been identified in nutrient enriched seawater incubations. The concentration and diversity of siderophore type chelates was highest in seawater amended with glucose. The concentrations and diversity of siderophore type chelates also varied with biogeographical area in the Atlantic Ocean, with the North Atlantic Sub-tropical Gyre yielding highest concentrations in incubations, and the South Atlantic Sub-tropical Gyre and Western Tropical Atlantic yielding the highest diversity
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-24
    Description: Iron (Fe) binding phases in two hydrothermal plumes in the Southern Ocean were studied using a novel voltammetric technique. This approach, reverse titration–competitive ligand exchange–adsorptive cathodic stripping voltammetry, showed that on average 30±21% of dissolved Fe in the hydrothermal plumes was stabilised by chemically labile binding to ligands. The conditional stability constant (log K′FeL) of the observed complexes was 20.61±0.54 (mean±1 SD) for the two vent sites, intermediate between previous measurements of deep ocean ligands (21.4–23; Kondo et al., 2012) and dissolved weak estuarine ligands (〈20; Gerringa et al., 2007). Our results indicate that approximately 7.5% of all hydrothermal Fe was stabilised by complexation with ligands. Furthermore, 47±26% of the dissolved Fe in the plume existed in the colloidal size range (0.02–0.2 µm). Our data suggests that a portion (∼7.5%) of hydrothermal Fe is sufficiently stabilised in the dissolved size fraction (〈0.2 µm) to make an important impact on deep ocean Fe distributions. Lateral deep ocean currents transport this hydrothermal Fe as lenses of enhanced Fe concentrations away from mid ocean ridge spreading centres and back arc basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-24
    Description: Concentrations of heme b, the ironcontaining prosthetic group of many hemoproteins, were measured in 6 species of marine phytoplankton (Dunaliella tertiolecta, Emiliania huxleyi, Thalassio - sira weissflogii, T. oceanica, Phaeodactylum tricor - nutum and Synechococcus sp. WH7803) that were subjected to variations in iron concentration. Changes in heme b in response to reduced light and nitrate were also ex amined for E. huxleyi and T. oceanica. Results from laboratory cultures were compared with heme b determined in particulate material in the North Atlantic. In cultures, heme b made up 18 ± 14% (SE) of the total iron pool. Reduced iron and nitrate concentrations resulted in a decreased intracellular heme b concentration, expressed as per mole carbon. Chlorophyll a (chl a) to heme b ratios in E. huxleyi and D. tertiolecta in creased in response to limited light and nutrient availability, but slightly decreased or did not change in the diatoms and the cyanophyte Synechococcus sp. WH7803. The heme b:particulate organic carbon (POC) and chl a:heme b ratios in the North Atlantic were within the range observed in phytoplankton cultures. In the surface mixed layer, decreases in heme b:POC ratios were linked to decreases in nutrient concentrations. Chl a:heme b ratios increased with depth and were thus primarily affected by light availability. Relative relationships between heme b, chl a and POC in the North Atlantic likely represented a change in the ability of cells to undertake cellular processes driven by chl a (light harvesting) and heme b (e.g. electron transport) according to ambient light and nutrient conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Royal Society of Chemistry
    In:  Metallomics, 6 (1107).
    Publication Date: 2021-04-23
    Description: Hemes are iron containing heterocyclic molecules important in many cellular processes. In the marine environment, hemes participate as enzymatic cofactors in biogeochemically significant processes like photosynthesis, respiration, and nitrate assimilation. Further, hemoproteins, hemes, and their analogs appear to be iron sources for some marine bacterioplankton under certain conditions. Current oceanographic analytical methodologies allow for the extraction and measurement of heme b from marine material, and a handful of studies have begun to examine the distribution of heme b in ocean basins. The study of heme in the marine environment is still in its infancy, but some trends can be gleaned from the work that has been published so far. In this review, we summarize what is known or might be inferred about the roles of heme in marine microbes as well as the few studies on heme in the marine environment that have been conducted to date. We conclude by presenting some future questions and challenges for the field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-23
    Description: A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP+ ion (m/z = 616) or the pseudomolecular [Fe(II)PTP + H]+ ion (m/z = 617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z = 557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616 ± 3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z = 557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2 ± 0.5 fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ = 400 nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z = 300 to 1500 resulted in identification of the pseudomolecular ion for the interfering compound. The CID fragmentation pattern and UV–visible mass spectra indicated that the interfering compound was a previously unidentified chlorin type compound. Comparison of FePTP determined by SRM and DAD on samples where this compound could not be detected showed that results collected using the two methods correlated. The use of both MS and DAD results in a powerful tool for quantifying this important biogenic component of the particulate iron pool.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-24
    Description: In this study we show that metals, and in particular copper (Cu), can disrupt the lytic cycle in the Emiliania huxleyi-EhV86 host-virus system. E. huxleyi lysis rates were reduced at high total Cu concentrations (〉 approximately 500 nM) in the presence and absence of EDTA (ethylenediaminetetraacetic acid) in acute short term exposure experiments. Zinc (Zn), cadmium (Cd), and cobalt (Co) were not observed to affect the lysis rate of EhV86 in these experiments. The cellular glutathione (GSH) content increased in virus infected cells, but not as a result of metal exposure. In contrast, the cellular content of phytochelatins (PCs) increased only in response to metal exposure. The increase in glutathione content is consistent with increases in the production of reactive oxygen species (ROS) on viral lysis, while increases in PC content are likely linked to metal homeostasis and indicate that metal toxicity to the host was not affected by viral infection. We propose that Cu prevents lytic production of EhV86 by interfering with virus DNA (deoxyribonucleic acid) synthesis through a transcriptional block, which ultimately suppresses the formation of ROS. © 2012 Gledhill, Devez, Highfield, Singleton, Achterberg and Schroeder.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-21
    Description: Concentrations of heme b, the iron-containing component of b-type hemoproteins, ranged from 〈 0.4 to 5.3 pM with an average of 1.18 ± 0.8 pM (± 1σ; n = 86) in the Iceland Basin (IB), from 〈 0.4 to 19.1 pM with an average of 2.24 ± 1.67 pM (n = 269) in the tropical northeast Atlantic (TNA) and from 0.6 to 21 pM with an average of 5.1 ± 4.8 pM (n = 34) in the Scotia Sea (SS). Heme b concentrations were enhanced in the photic zone and decreased with depth. Heme b concentrations correlated positively with chlorophyll a (chl a) in the TNA (r = 0.41, p 〈 0.01, n = 269). Heme b did not correlate with chl a in the IB or SS. In the IB and SS, stations with high-chlorophyll and low-nutrient (Fe and/or Si) concentrations exhibited low heme b concentrations relative to particulate organic carbon (〈 0.1 μmol mol−1), and high chl a:heme b ratios (〉 500). High chl a:heme b ratios resulted from relative decreases in heme b, suggesting proteins such as cytochrome b6f, the core complex of photosystem II, and eukaryotic nitrate reductase were depleted relative to proteins containing chlorophyll such as the eukaryotic light-harvesting antenna. Relative variations in heme b, particulate organic carbon, and chl a can thus be indicative of a physiological response of the phytoplankton community to the prevailing growth conditions, within the context of large-scale changes in phytoplankton community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Microbiology, 3 (69).
    Publication Date: 2017-10-24
    Description: Iron (Fe) is an essential micronutrient for marine organisms, and it is now well established that low Fe availability controls phytoplankton productivity, community structure, and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle of Fe involves complex interactions between lithogenic inputs (atmospheric, continental, or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization, and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe. In this review we consider recent advances in our knowledge of Fe complexation in the marine environment and their implications for the biogeochemistry of Fe in the ocean. We also highlight the importance of constraining the dissolved Fe concentration value used in interpreting voltammetric titration data for the determination of Fe speciation. Within the published Fe speciation data, there appear to be important temporal and spatial variations in Fe-binding ligand concentrations and their conditional stability constants in the marine environment. Excess ligand concentrations, particularly in the truly soluble size fraction, seem to be consistently higher in the upper water column, and especially in Fe-limited, but productive, waters. Evidence is accumulating for an association of Fe with both small, well-defined ligands, such as siderophores, as well as with larger, macromolecular complexes like humic substances, exopolymeric substances, and transparent exopolymers. The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a change in kinetic inertness which will have a consequent impact on biological availability. However, much work is still to be done in coupling voltammetry, mass spectrometry techniques, and process studies to better characterize the nature and cycling of Fe-binding ligands in the marine environmen
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...