GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C12022, doi:10.1029/2012JC008369.
    Description: Horizontal velocity, temperature and salinity measurements from the Line W array for the period 2004–2008 show large changes in the water mass structure and circulation of the Deep Western Boundary Current (DWBC). Fluctuations in the flow with periods from 10 to 60 days are bottom intensified: signals most likely associated with topographic Rossby waves (TRW). A fraction (∼15%) of the DWBC transport variability is caused by Gulf Stream rings and meanders. These flow anomalies are surface intensified and fluctuate at frequencies lower than the TRW. Interannual variability in the velocity field appears to be related to changes in the hydrographic properties. The dominant mode of variability is characterized by an overall freshening, cooling, a potential vorticity (PV) increase in the deep Labrador Sea Water (dLSW) and a PV decrease in the Overflow Water (OW). The variability in the flow associated with these property changes is not spatially homogeneous. Offshore (water depths larger than 3500 m) changes in the velocity are in phase with PV changes in the OW: a decrease in the OW PV is accompanied by an increase in the southward (negative) transport. Conversely, variations of the inshore flow are in phase with changes in the dLSW PV (increasing PV and decreasing transport). This trend, true for most of the record, reverses after the winter of 2007–2008. A sudden decrease of the dLSW PV is observed, with a corresponding intensification of the flow in the inner DWBC as well as a northward shift in the Gulf Stream axis.
    Description: Financial support for the Line W program (2004–2008) was provided by the U.S. National Science Foundation (grants OCE-0241354 and OCE-0726720) as well as funding from the WHOI’s Ocean and Climate Change Institute.
    Description: 2013-06-22
    Keywords: DWBC ; Gulf Stream ; Line W ; Transport ; Variability ; Water mass
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 40 (2013): 5915–5919, doi:10.1002/2013GL058013.
    Description: Annually averaged sea level (1970–2012) measured by tide gauges along the North American east coast is remarkably coherent over a 1700 km swath from Nova Scotia to North Carolina. Satellite altimetry (1993–2011) shows that this coherent interannual variability extends over the Middle Atlantic Bight, Gulf of Maine, and Scotian Shelf to the shelf break where there is a local minimum in sea level variance. Comparison with National Center for Environmental Prediction reanalysis winds suggests that a significant fraction of the detrended sea level variance is forced by the region's along-shelf wind stress. While interannual changes in sea level appear to be forced locally, altimetry suggests that the changes observed along the coast and over the shelf may influence the Gulf Stream path downstream of Cape Hatteras.
    Description: M. Andres gratefully acknowledges support from the Woods Hole Oceanographic Institution’s Coastal Ocean Institute. G. Gawarkiewicz acknowledges the support of NSF grant OCE-1129125.
    Keywords: Sea level ; Gulf Stream ; AMOC ; Continental shelf ; Wind stress ; Altimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...