GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (2)
  • Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Behaviour; Bicarbonate; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Incubation duration; Laboratory experiment; Measured; Mollusca; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Optical sensor (HPS-OIW); Optical sensor (PS1, PreSens); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Salinity; Sepia officinalis; Sepia officinalis, haemolymph, bicarbonate, standard deviation; Sepia officinalis, haemolymph, bicarbonate ion; Sepia officinalis, haemolymph O2; Sepia officinalis, haemolymph O2, standard deviation; Sepia officinalis, haemolymph pCO2; Sepia officinalis, haemolymph pCO2, standard deviation; Sepia officinalis, haemolymph pH; Sepia officinalis, haemolymph pH, standard deviation; Sepia officinalis, pH, intracellular; Sepia officinalis, pH, intracellular, standard deviation; Sepia officinalis, phosphate, inorganic/phospho-L-arginine ratio; Sepia officinalis, phosphate, inorganic/phospho-L-arginine ratio, standard de; Sepia officinalis, ventilation frequency, changes; Sepia officinalis, ventilation frequency, changes, standard deviation; Single species; Temperate; Temperature, water  (1)
  • Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Calcification/Dissolution; Calcite saturation state; Calcium carbonate, mass; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Experimental treatment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; Laboratory experiment; Length; Mass; Mollusca; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Salinity; Salinity, standard deviation; Sepia officinalis; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Width  (1)
  • Adoncholaimus; Alkalinity, total; Anoplostoma; Aragonite saturation state; Ascolaimus; Axonolaimus; Baltic Sea; Bathylaimus; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bivalvia; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cerastoderma edule; Chromadora; Chromadorida, juvenile; Chromadorita; Coast and continental shelf; Cobbia; Community composition and diversity; Copepoda; Cyartonema; Daptonema; DATE/TIME; Dead; Desmolaimus; Dichromadora; Dry mass; ECO2; Eleutherolaimus; Enoploides; Enoplolaimus; Enoplus; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gastropoda; Gastrotricha; Growth/Morphology; Halacaroidea; Halomonhystera; Hypodontolaimus; Identification; Kiel_Falckenstein_OA; Laboratory experiment; Length; Malondialdehyde, per wet mass; Metachromadora; Metadesmolaimus; Microlaimus; Mortality/Survival; Nauplii; Nematoda; Neochromadora; Number; OA-ICC; Ocean Acidification International Coordination Centre; Odontophora; Oligochaeta; Oncholaimellus; Oncholaimus; Operational taxonomic unit; Ostracoda; Pandolaimus; Paracanthonchus; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Polychaeta; Pomponema; Registration number of species; Sabatieria; Salinity; Sample code/label; Soft-bottom community; Species; Sphaerolaimus; Spilophorella; Spirinia; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Tardigrada; Temperate; Temperature, water; Theristus; Time point, descriptive; Treatment: partial pressure of carbon dioxide; Trichotheristus; Turbellaria; Type; Uniform resource locator/link to reference; Viscosia
  • 2010-2014  (2)
Document type
  • Data  (2)
Source
Keywords
Publisher
Years
  • 2010-2014  (2)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gutowska, Magdalena A; Melzner, Frank; Langenbuch, M; Bock, C; Claireaux, Guy; Pörtner, Hans-Otto (2010): Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B-Biochemical Systemic and Environmentalphysiology, 180(3), 323-335, https://doi.org/10.1007/s00360-009-0412-y
    Publication Date: 2024-03-15
    Description: Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Behaviour; Bicarbonate; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Incubation duration; Laboratory experiment; Measured; Mollusca; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Optical sensor (HPS-OIW); Optical sensor (PS1, PreSens); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Salinity; Sepia officinalis; Sepia officinalis, haemolymph, bicarbonate, standard deviation; Sepia officinalis, haemolymph, bicarbonate ion; Sepia officinalis, haemolymph O2; Sepia officinalis, haemolymph O2, standard deviation; Sepia officinalis, haemolymph pCO2; Sepia officinalis, haemolymph pCO2, standard deviation; Sepia officinalis, haemolymph pH; Sepia officinalis, haemolymph pH, standard deviation; Sepia officinalis, pH, intracellular; Sepia officinalis, pH, intracellular, standard deviation; Sepia officinalis, phosphate, inorganic/phospho-L-arginine ratio; Sepia officinalis, phosphate, inorganic/phospho-L-arginine ratio, standard de; Sepia officinalis, ventilation frequency, changes; Sepia officinalis, ventilation frequency, changes, standard deviation; Single species; Temperate; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1725 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gutowska, Magdalena A; Melzner, Frank; Pörtner, Hans-Otto; Meier, Sebastian (2010): Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Marine Biology, 157(7), 1653-1663, https://doi.org/10.1007/s00227-010-1438-0
    Publication Date: 2024-03-15
    Description: Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officials during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44-56 mm), cuttlebones of CO2-incubated individuals accreted 22-55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2- exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 lm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 lm. Interestingly, the incorporation of non-acidsoluble organic matrix (chitin) in the cuttlebones of CO2- exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officials, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 -] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officials is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Calcification/Dissolution; Calcite saturation state; Calcium carbonate, mass; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Experimental treatment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; Laboratory experiment; Length; Mass; Mollusca; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Salinity; Salinity, standard deviation; Sepia officinalis; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Width
    Type: Dataset
    Format: text/tab-separated-values, 1680 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...