GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Long-Term Potentiation  (1)
  • AA; Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Autoanalyzer; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Electron transport rate of photosystem II; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Light:Dark cycle; Maximum photochemical quantum yield of photosystem II; Nutrient uptake rate, per chlorophyll; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Primary production/Photosynthesis; pulse-amplitude-modulated chlorophyll fluorometry (diving PAM, Waltz, Germany); Radiation, photosynthetically active; Red Sea; Salinity; see reference(s); Single species; Spectrofluorometry; Spectrophotometry; Stylophora pistillata; Stylophora pistillata, chlorophyll; Stylophora pistillata, protein content; Stylophora pistillata, zooxanthellate cell density; Temperature; Temperature, water  (1)
  • Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP  (1)
  • 2010-2014  (3)
Document type
Keywords
Years
  • 2010-2014  (3)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pretet, Chloé; Samankassou, Elias; Felis, Thomas; Reynaud, Stéphanie; Böhm, Florian; Eisenhauer, Anton; Ferrier-Pagès, Christine; Gattuso, Jean-Pierre; Camoin, Gilbert (2013): Constraining calcium isotope fractionation (d44/40Ca) in modern and fossil scleractinian coral skeleton. Chemical Geology, 340, 49-58, https://doi.org/10.1016/j.chemgeo.2012.12.006
    Publication Date: 2023-07-13
    Description: The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (d44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the d44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of d44/40Ca ranges from 0.6 to 0.1 per mil, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and d44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by d18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's d44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Godinot, Claire; Houlbrèque, Fanny; Grover, Renaud; Ferrier-Pagès, Christine (2011): Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 6(9), e25024, https://doi.org/10.1371/journal.pone.0025024
    Publication Date: 2024-03-15
    Description: The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT(8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT(7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.
    Keywords: AA; Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Autoanalyzer; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Electron transport rate of photosystem II; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Light:Dark cycle; Maximum photochemical quantum yield of photosystem II; Nutrient uptake rate, per chlorophyll; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Primary production/Photosynthesis; pulse-amplitude-modulated chlorophyll fluorometry (diving PAM, Waltz, Germany); Radiation, photosynthetically active; Red Sea; Salinity; see reference(s); Single species; Spectrofluorometry; Spectrophotometry; Stylophora pistillata; Stylophora pistillata, chlorophyll; Stylophora pistillata, protein content; Stylophora pistillata, zooxanthellate cell density; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 10336 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-02
    Description: Long-term synaptic potentiation (LTP) is thought to be a key process in cortical synaptic network plasticity and memory formation. Hebbian forms of LTP depend on strong postsynaptic depolarization, which in many models is generated by action potentials that propagate back from the soma into dendrites. However, local dendritic depolarization has been shown to mediate these forms of LTP as well. As pyramidal cells in supragranular layers of the somatosensory cortex spike infrequently, it is unclear which of the two mechanisms prevails for those cells in vivo. Using whole-cell recordings in the mouse somatosensory cortex in vivo, we demonstrate that rhythmic sensory whisker stimulation efficiently induces synaptic LTP in layer 2/3 (L2/3) pyramidal cells in the absence of somatic spikes. The induction of LTP depended on the occurrence of NMDAR (N-methyl-d-aspartate receptor)-mediated long-lasting depolarizations, which bear similarities to dendritic plateau potentials. In addition, we show that whisker stimuli recruit synaptic networks that originate from the posteromedial complex of the thalamus (POm). Photostimulation of channelrhodopsin-2 expressing POm neurons generated NMDAR-mediated plateau potentials, whereas the inhibition of POm activity during rhythmic whisker stimulation suppressed the generation of those potentials and prevented whisker-evoked LTP. Taken together, our data provide evidence for sensory-driven synaptic LTP in vivo, in the absence of somatic spiking. Instead, LTP is mediated by plateau potentials that are generated through the cooperative activity of lemniscal and paralemniscal synaptic circuitry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gambino, Frederic -- Pages, Stephane -- Kehayas, Vassilis -- Baptista, Daniela -- Tatti, Roberta -- Carleton, Alan -- Holtmaat, Anthony -- England -- Nature. 2014 Nov 6;515(7525):116-9. doi: 10.1038/nature13664. Epub 2014 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland [2] [3] Institute for Interdisciplinary Neuroscience (IINS), UMR 5297 CNRS and University of Bordeaux, 146 rue Leo-Saignat, 33077 Bordeaux, France. ; 1] Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland [2]. ; 1] Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland [2] Lemanic Neuroscience Doctoral School, 1 rue Michel Servet, 1211 Geneva, Switzerland. ; Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25174710" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Dendrites/*physiology ; *Long-Term Potentiation ; Male ; Mice ; Mice, Inbred C57BL ; Physical Stimulation ; Receptors, N-Methyl-D-Aspartate/metabolism ; Rhodopsin/metabolism ; Somatosensory Cortex/*cytology/*physiology ; Thalamus/cytology/physiology ; Vibrissae/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...