GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-11
    Description: Remotely Operated Vehicles (ROVs) have proven to be highly effective in recovering well localized samples and observations from the seafloor. In the course of ROV deployments, however, huge amounts of video and photographic data are gathered which present tremendous potential for data mining. We present a new workflow based on industrial software to derive fundamental field geology information such as quantitative stratigraphy and tectonic structures from ROV-based photo and video material. We demonstrate proof of principle tests for this workflow on video data collected during dives with the ROV Kiel6000 on a new hot spot volcanic field that was recently identified southwest of the island of Santo Antão in the Cape Verdes. Our workflow allows us to derive three-dimensional models of outcrops facilitating quantitative measurements of joint orientation, bedding structure, grain size comparison and photo mosaicking within a georeferenced framework. The compiled data facilitate volcanological and tectonic interpretations from hand specimen to outcrop scales based on the quantified optical data. The demonstrated procedure is readily replicable and opens up possibilities for post-cruise “virtual fieldwork” on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-23
    Description: During IODP NanTroSEIZE Expedition 322, four packages of tuffaceous sandstones (TST 1, 2, 3a, 3b) were recovered within a moderately lithified and bioturbated silty claystone succession in the Late Miocene (〉 7.6 to ~ 9.1 Ma) upper part of the middle Shikoku Basin deposits. To assess the emplacement processes of the tuffaceous sandstones we investigate modal and geochemical compositions of 24 thin sections that reveal systematic vertical changes within each bed. TST 1, 2 and 3b are single beds whereas TST 3a is composed of at least two beds suggesting several rapidly succeeding sedimentation events. The beds are density-graded such that low-density pyroclasts including pumice lapilli are enriched at the top whereas dense lithic components and minerals are enriched at the bottom. The volcanic glass particles (pumice and shards) that are the dominant modal constituents of each sandstone bed have homogeneous geochemical compositions in each bed. Moreover, TST 1, 2, and 3a glass compositions overlap completely but TST 3b glass has a different composition, as is analogously observed for the mineral compositions. This unique multistage approach of sedimentological and geochemical methods facilitated the detailed investigation of distal volcano-derived, probably tsunamogenic, turbidites in order to contribute to the distinction between primary and secondary induced mass flows. We interpret that all tuffaceous sandstones were emplaced by turbidity currents that were formed during major explosive volcanic eruptions. However, while TST 1, 2, and 3a turbidity currents formed by the entry into the ocean of voluminous pyroclastic flows erupted at a volcano on mainland Japan, TST 3b was emplaced by a turbidity current formed by a shallow submarine or subaerial volcanic eruption at the Izu–Bonin arc where it collided with Japan. These results regarding distal turbidites encourage the revisiting of older marine deposits in the scope of hazard evaluation through past events, especially in regions near to volcanic sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-24
    Description: Atmospheric deposition of volcanic ash has recently been recognized as an important nutrient source into the surface ocean. Mount Etna (Italy), one of the world's most active volcanoes, is located in the oligotrophic Mediterranean Sea (MedSea). Despite the active volcanism on Mount Etna, the biogeochemical impacts of volcanic ash fallouts on the marine primary productivity (MPP) remain largely unknown. Here we present the results of seawater nutrient release experiments with volcanic ash samples from Mount Etna that have been collected during different eruptive episodes between 2001 and 2007. Our results show that volcanic ash from Mount Etna releases significant amounts of fixed-N (35-855 nmol/g), P (7-970 nmol/g), Si (3-2060 nmol/g), Fe (10-130 nmol/g) and Zn (〈21 nmol/g). We further estimated an example representative of ash-fall from Etna based on the case-study focusing on 4-5 November 2002 activity, by using the general relation between the thicknesses of the ash deposits and the ash depositional areas. Etna explosive eruptions can transport volcanic ash as far as 800 km, with ash emissions exceeding the particle flux during dust storm events (of 10 g/m(2) input) as far as 400 km downwind from the volcano. Our results emphasize that Etna ash can provide a significant supply of nutrients, which can favor the MPP in the central MedSea
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Geochemical Exploration, 106 (1-3). pp. 176-187.
    Publication Date: 2019-09-23
    Description: Two volcanic ash layer dominated marine gravity cores were recovered during research cruise RV Sonne 173/3 along the Pacific margin offshore Nicaragua. Thick ash layers dominate the recovered sediments. Pore water samples of these – one incoming plate and one slope site – sediment cores have been analysed for light rare earth elements, alkalinity, sulphate, phosphate, ammonia, calcium, and manganese contents. The data provide a systematic look at changes in REE during diagenesis proceeding from open ocean sediments to highly reducing near-shore sediments. The pore water patterns of all the dissolved species mentioned above suggest that volcanic glass alteration constitutes a major source for REE release in marine sediments when low rates of anaerobic degradation of organic matter, like typical for incoming plate/open ocean sediments, prevail. Under these conditions the release of REE results in fluxes of at least 0.04 nmol La cm− 2 yr− 1 and 0.09 nmol Ce cm− 2 yr− 1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-08
    Description: Volcano edifice volume calculations are presented for 65 volcanoes of the 1400 km long Chilean Southern Volcanic Zone (SVZ) as a basic step in subduction zone mass budgets. Volume calculations are performed in a Geographical Information System that integrates Digital Elevation Models based on of Shuttle Radar Topography Mission as well as ASTER-GDEM topographic data, LANDSAT satellite images and geological maps. The method of volume calculation is straightforward for isolated, morphologically well-defined stratovolcanoes. Uncertainties increase for volcanic edifices that formed on pre-existing rugged terrain, for multi-phase eruptive centers, as well as for eroded edifices. A revised segmentation of the arc is used to describe the spatial volume distribution of extruded magma along the SVZ and to discuss controlling tectonic factors. Peak volumes between arc and back arc are offset by 400 km. The total volcanic extrusion is in the range of 10–13 km3/km/Ma. Major differences between the SVZ and the Central American subduction system are notable with regard to volcano density and maximum volumes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...