GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08013, doi:10.1029/2007GC001652.
    Description: We report first evidence for hydrothermal activity from the southern Knipovich Ridge, an ultra-slow spreading ridge segment in the Norwegian-Greenland Sea. Evidence comes from optical backscatter anomalies collected during a systematic side-scan sonar survey of the ridge axis, augmented by the identification of biogeochemical tracers in the overlying water column that are diagnostic of hydrothermal plume discharge (Mn, CH4, ATP). Analysis of coregistered geologic and oceanographic data reveals that the signals we have identified are consistent with a single high-temperature hydrothermal source, located distant from any of the axial volcanic centers that define second-order segmentation along this oblique ridge system. Rather, our data indicate a hydrothermal source associated with highly tectonized seafloor that may be indicative of serpentinizing ultramafic outcrops. Consistent with this hypothesis, the hydrothermal plume signals we have detected exhibit a high methane to manganese ratio of 2–3:1. This is higher than that typical of volcanically hosted vent sites and provides further evidence that the source of the plume signals reported here is most probably a high-temperature hydrothermal field that experiences some ultramafic influence (compare to Rainbow and Logachev sites, Mid-Atlantic Ridge). While such sites have previously been invoked to be common on the SW Indian Ridge, this may be the first such site to be located along the Arctic ultra-slow spreading ridge system.
    Description: Connelly and German were funded by NERC grant NER/B/S/ 2000/00755, NERC Core Strategic Funding at NOC, and the ChEss project of the Census of Marine Life.
    Keywords: Hydrothermal ; Arctic ; Serpentinization ; Knipovich Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q05T05, doi:10.1029/2008GC002314.
    Description: This paper demonstrates that a Raman spectroscopy, point-counting technique can be used for phase analysis of minerals commonly found in deep-sea hydrothermal plumes, even for minerals with similar chemical compositions. It also presents our robust autonomous identification algorithm and spectral database, both of which were developed specifically for deep-sea hydrothermal studies. The Raman spectroscopy expert algorithm was developed and tested against multicomponent mixtures of minerals relevant to the deep-sea hydrothermal environment. It is intended for autonomous classification where many spectra must be examined with little or no human involvement to increase analytic precision, accuracy, and data volume or to enable in situ measurements and experimentation.
    Description: Support for J.A.B. was provided through a RIDGE 2000 Postdoctoral Fellowship (NSF OCE-0550331).
    Keywords: Hydrothermal ; Mineralogy ; Optical instruments ; Raman spectroscopy ; Analytic techniques ; Chemical sensor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/zip
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L10608, doi:10.1029/2006GL026048.
    Description: About 90% of Earth's volcanism occurs along the global mid-ocean ridge system. Here, sporadic volcanic and tectonic activity is thought to cause cataclysmic release of hydrothermal fluids, forming event plumes. Each plume often contains as much hydrothermal effluent and heat as chronic hydrothermal venting from a typical vent site discharges during a year. To date, only a few event plumes have been detected, and only above intermediate-rate spreading ridges in the Pacific. Here, we report the first evidence for an unusually large event plume that originated from the slow-spreading (3 cm/yr full-rate) Carlsberg Ridge in the NW Indian Ocean. At 70 km long, up to 4540 km3 in volume and with up to 24 × 1016 J of excess heat, this event plume was substantially larger than previous ones and demonstrates that dispersion of hydrothermal heat and biological products from slow spreading ridges may be more significant and effective than hitherto imagined.
    Description: This work was supported by the Natural Environment Research Council, UK; the National Oceanography Centre, Southampton (NOCS); the NOAA Vents Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L18303, doi:10.1029/2010GL043542.
    Description: Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47′S, 49°39′E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least −3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is −8 × 107 Am2 and that for the four individual vent fields on the JdF range from −5 × 107 to −3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.
    Description: This work was supported by NSF‐China and COMRA Projects 40676023 and DYXM‐115‐02‐03‐02 (JZ and YJC), the Charles D. Hollister Endowed Fund for Support of Innovative Research at WHOI (JL), and the ChEss Program of the Census of Marine Life (CRG).
    Keywords: Reduced magnetization zone ; Southwest Indian Ridge ; Hydrothermal vent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...