GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (174 S., 26,70 MB) , Ill., graph. Darst., Kt.
    Series Statement: IFM-GEOMAR report 47
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-16
    Description: The convergent margin of the central Sunda Arc in Indonesia was the target of a reflection and refraction seismic survey conducted in 1998 and 1999. Along two seismic lines across the subduction complex off southern Sumatra and off Sunda Strait, coincident multichannel and wide-angle data were collected, complemented by two refraction strike-lines in the forearc basin off Sumatra. The combined analysis of the acquired data allows us to present a detailed model of the subduction zone where initiation of strain partitioning occurs due to the onset of oblique subduction. The dip of the subducted plate is well defined along both dip-lines and a lateral increase from 5° to 7° from beneath the outer high off Sumatra to Sunda Strait is supported by complementary gravity modelling. The downgoing slab is traced to a depth of more than 30km. On both reflection dip-lines, a clearly developed backstop structure underlying a trench slope break defines the landward termination of the active accretionary prism and separates it from the outer high. Active subduction accretion is supported by laterally increasing velocities between the deformation front and the active backstop structure. Seismic velocities of the outer high are moderate along both lines (〈5.8kms−1 at 20km depth), suggesting a sedimentary composition. Reduced reflectivity beneath a rugged top basement traced along the outer high of both dip-lines supports a high degree of deformation and material compaction. Several kilometres of sediment has accumulated in the forearc domain, although a distinct morphological basin is only recognized off southern Sumatra and is not developed off Sunda Strait. The bathymetric elevation of the Java shelf that is encountered in the southern Sunda Strait corresponds to increased velocities of a basement high there and is connected to extensional structures of the Sunda Strait transtensional basin. Differences observed in the morphology of the forearc domain are also reflected in the lower crustal structure. Off southern Sumatra, the velocity–depth model clearly indicates a continental-type crust underlying the forearc basin, whereas lower velocities are found beneath the Sunda Strait forearc domain. Off Sumatra, some 3-D constraint on the upper plate structure is gained from the refraction strike-lines, which in addition is supported by synthetic data modelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-27
    Description: Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology and climate change. Although the relationship between hydrates, gas chimneys and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e. protothrusts, normal faults from flexural extension, and shallow (〈1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2x7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for sub-seafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-31
    Description: A 550-km-long transect across the Ninetyeast Ridge, a major Indian ocean hotspot trail, provided seismic refraction and wide-angle reflection data recorded on 60 ocean bottom instruments. About 24 000 crustal and 15 000 upper mantle arrivals have been picked and used to derive an image of the hotspot track. Two approaches have been chosen: (i) a first-arrival tomographic inversion yielding crustal properties; and (ii) forward modelling of mantle phases revealing the structure at the crust–mantle boundary region and of the uppermost mantle. Away from the volcanic edifice, seismic recordings show the typical phases from oceanic crust, that is, two crustal refraction branches (Pg), a wide-angle reflection from the crust–mantle boundary (PmP) and a wave group turning within the upper mantle (Pn). Approaching the edifice, three additional phases have been detected. We interpret these arrivals as a wide-angle reflection from the base of material trapped under the pre-hotspot crust (Pm2P) and as a wide-angle reflection (PnP) and its associated refraction branch (PN) from a layered upper mantle. The resulting models indicate normal oceanic crust to the west and east of the edifice. Crustal thickness averages 6.5–7 km. Wide-angle reflections from both the pre-hotspot and the post-hotspot crust–mantle boundary suggest that the crust under the ridge has been bent downwards by loading the lithosphere, and hotspot volcanism has underplated the pre-existing crust with material characterized by seismic velocities intermediate between those of mafic lower crustal and ultramafic upper mantle rocks (7.5–7.6 km s−1). In total, the crust is up to ≈ 24 km thick. The ratio between the volume of subcrustal plutonism forming the underplate and extrusive and intrusive volcanism forming the edifice is about 0.7. An important observation is that underplating continued to the east under the Wharton Basin. During the shield-building phase, however, Ninetyeast Ridge was located adjacent to the Broken Ridge and was subsequently pulled apart along a transform fault boundary. Therefore, underplating eastwards of the fracture zone separating the edifice from the Wharton Basin suggests that prolonged crustal growth by subcrustal plutonism occurred over millions of years after the major shield-building stage. This fact, however, requires mantle flow along the fossil hotspot trail. The occurrence of PnP and PN arrivals is probably associated with a layered and anisotropic upper mantle due to the preferential alignment of olivine crystals and may have formed by rising plume material which spread away under the base of the lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-17
    Description: Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0–200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5–6.0 km s−1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Recent seismic evidence suggested that most oceanic plate hydration is associated with trench-outer rise faulting prior to subduction. Hydration at trenches may have a significant impact on the subduction zone water cycle. Previous seismic experiments conducted to the northwest of Nicoya Peninsula, Northern Costa Rica, have shown that the subducting Cocos lithosphere is pervasively altered, which was interpreted to be due to both hydration (serpentinization) and fracturing of the crustal and upper-mantle rocks. New seismic wide-angle reflection and refraction data were collected along two profiles, running parallel to the Middle American trench axis offshore of central Nicaragua, revealing lateral changes of the seismic properties of the subducting lithosphere. Seismic structure along both profiles is characterized by low velocities both in the crust and upper mantle. Velocities in the uppermost mantle are found to be in the range 7.3–7.5 km s−1; thus are 8–10 per cent lower than velocities typical for unaltered peridotites and hence confirm the assumption that serpentinization is a common process at the trench-outer rise area offshore of Nicaragua. In addition, a prominent velocity anomaly occurred within the crust beneath two seamounts. Here, velocity reduction may indicate increased porosity and perhaps permeability, supporting the idea that seamounts serve as sites for water percolation and circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...