GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-14
    Description: We compare and contrast the ecological impacts of atmospheric and oceanic circulation patterns on polar and sub-polar marine ecosystems. Circulation patterns differ strikingly between the north and south. Meridional circulation in the north provides connections between the sub-Arctic and Arctic despite the presence of encircling continental landmasses, whereas annular circulation patterns in the south tend to isolate Antarctic surface waters from those in the north. These differences influence fundamental aspects of the polar ecosystems from the amount, thickness and duration of sea ice, to the types of organisms, and the ecology of zooplankton, fish, seabirds and marine mammals. Meridional flows in both the North Pacific and the North Atlantic oceans transport heat, nutrients, and plankton northward into the Chukchi Sea, the Barents Sea, and the seas off the west coast of Greenland. In the North Atlantic, the advected heat warms the waters of the southern Barents Sea and, with advected nutrients and plankton, supports immense biomasses of fish, seabirds and marine mammals. On the Pacific side of the Arctic, cold waters flowing northward across the northern Bering and Chukchi seas during winter and spring limit the ability of boreal fish species to take advantage of high seasonal production there. Southward flow of cold Arctic waters into sub-Arctic regions of the North Atlantic occurs mainly through Fram Strait with less through the Barents Sea and the Canadian Archipelago. In the Pacific, the transport of Arctic waters and plankton southward through Bering Strait is minimal. In the Southern Ocean, the Antarctic Circumpolar Current and its associated fronts are barriers to the southward dispersal of plankton and pelagic fishes from sub-Antarctic waters, with the consequent evolution of Antarctic zooplankton and fish species largely occurring in isolation from those to the north. The Antarctic Circumpolar Current also disperses biota throughout the Southern Ocean, and as a result, the biota tends to be similar within a given broad latitudinal band. South of the Southern Boundary of the ACC, there is a large-scale divergence that brings nutrient-rich water to the surface. This divergence, along with more localized upwelling regions and deep vertical convection in winter, generates elevated nutrient levels throughout the Antarctic at the end of austral winter. However, such elevated nutrient levels do not support elevated phytoplankton productivity through the entire Southern Ocean, as iron concentrations are rapidly removed to limiting levels by spring blooms in deep waters. However, coastal regions, with the upward mixing of iron, maintain greatly enhanced rates of production, especially in coastal polynyas. In these coastal areas, elevated primary production supports large biomasses of zooplankton, fish, seabirds, and mammals. As climate warming affects these advective processes and their heat content, there will likely be major changes in the distribution and abundance of polar biota, in particular the biota dependent on sea ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 166 (2017): 87-96, doi:10.1016/j.jmarsys.2016.08.014.
    Description: The bioavailability of iron influences the distribution, biomass and productivity of phytoplankton in the Ross Sea, one of the most productive regions in the Southern Ocean. We mapped the spatial and temporal extent and severity of iron-limitation of the native phytoplankton assemblage using long- (〉24 h) and short-term (24 h) iron- addition experiments along with physiological and molecular characterisations during a cruise to the Ross Sea in December-February 2012. Phytoplankton increased their photosynthetic efficiency in response to iron addition, suggesting proximal iron limitation throughout most of the Ross Sea during summer. Molecular and physiological data further indicate that as nitrate is removed from the surface ocean the phytoplankton community transitions to one displaying an iron-efficient photosynthetic strategy characterised by an increase in the size of photosystem II (PSII) photochemical cross section (σPSII) and a decrease in the chlorophyll-normalised PSII abundance. These results suggest that phytoplankton with the ability to reduce their photosynthetic iron requirements are selected as the growing season progresses, which may drive the well-documented progression from Phaeocystis antarctica- assemblages to diatom-dominated phytoplankton. Such a shift in the assemblage-level photosynthetic strategy potentially mediates further drawdown of nitrate following the development of iron deficient conditions in the Ross Sea.
    Description: This research was supported by grants from the National Science Foundation (ANT-0944254 to W.O.S., ANT-0944174 to P.N.S.), and a NERC PhD studentship to TRK.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 8088–8097, doi:10.1002/2015GL065727.
    Description: The Ross Sea sustains a rich ecosystem and is the most productive sector of the Southern Ocean. Most of this production occurs within a polynya during the November–February period, when the availability of dissolved iron (dFe) is thought to exert the major control on phytoplankton growth. Here we combine new data on the distribution of dFe, high-resolution model simulations of ice melt and regional circulation, and satellite-based estimates of primary production to quantify iron supply and demand over the Ross Sea continental shelf. Our analysis suggests that the largest sources of dFe to the euphotic zone are wintertime mixing and melting sea ice, with a lesser input from intrusions of Circumpolar Deep Water and a small amount from melting glacial ice. Together these sources are in approximate balance with the annual biological dFe demand inferred from satellite-based productivity algorithms, although both the supply and demand estimates have large uncertainties.
    Keywords: Iron ; Ross Sea ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: IVARS Marine Snow profiles
    Description: “This data set replaces https://hdl.handle.net/1912/24231 or DOI:10.1575/1912/bco-dmo.719478.1.” Abundance and size distribution of marine snow aggregates from profiles conducted during R/V Polar Star cruises in the Ross Sea, Antarctica between 2001 and 2005. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/719478
    Description: NSF Division of Polar Programs (NSF PLR) PLR-0087401
    Keywords: Marine snow
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: IVARS Marine Snow profiles
    Description: “This data set has been updated. Please refer to https://hdl.handle.net/1912/24265 or DOI:10.1575/1912/bco-dmo.719478.2 for the latest version of the data set.” Abundance and size distribution of marine snow aggregates from profiles conducted during R/V Polar Star cruises in the Ross Sea, Antarctica between 2001 and 2005. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/719478
    Description: NSF Division of Polar Programs (NSF PLR) PLR-0087401
    Keywords: Marine snow
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-31
    Description: Dataset: IVARS Phaeocystis
    Description: “This data set replaces https://hdl.handle.net/1912/24232 or DOI:10.1575/1912/bco-dmo.768570.1.” Abundance and size distribution of abandoned (ghost) Phaeocystis colonies from profiles conducted during R/V Polar Star cruises in the Ross Sea, Antarctica between 2001 and 2005. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/768570
    Description: NSF Division of Polar Programs (NSF PLR) PLR-0087401
    Keywords: Marine snow ; Phaeocystis
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-31
    Description: Dataset: IVARS Phaeocystis
    Description: “This data set has been updated. Please refer to https://hdl.handle.net/1912/24266 or DOI:10.1575/1912/bco-dmo.768570.2 for the latest version of the data set.” Abundance and size distribution of abandoned (ghost) Phaeocystis colonies from profiles conducted during R/V Polar Star cruises in the Ross Sea, Antarctica between 2001 and 2005. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/768570
    Description: NSF Division of Polar Programs (NSF PLR) PLR-0087401
    Keywords: Marine snow ; Phaeocystis
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Marine Systems 166 (2017): 97-107, doi:10.1016/j.jmarsys.2016.05.007.
    Description: Phaeocystis, a genus with a cosmopolitan distribution and a polymorphic life cycle, was observed during summer in the Ross Sea, Antarctica, where large blooms of this haptophyte regularly occur. The mesoscale vertical and horizontal distributions of colonies of P. antarctica were assessed using a towed Video Plankton Recorder (VPR). The mean size of colonies was 1.20 mm, and mean abundances within the three VPR surveys were 4.86, 1.96, and 11.5 mL-1. In addition to the typical spherical, transparent colonies, the VPR quantified an optically dissimilar form of colony that had a distinctive translucent appearance. It also measured the abundance of collapsed colonies, similar to those observed previously from cultures and mesocosms, which we called “ghost colonies”. The translucent colonial form had a different distribution than the more common colonial form, and at times was more abundant. Relative to intact colonies, the ghost colonies occurred less frequently, with mean abundances in the three surveys being 0.01, 0.08, and 0.0004 mL-1. Ghost colonies generally were found below the euphotic zone, where they often were in greater abundance than intact colonies. However, the relationship of ghost colonies to intact P. antarctica colonies was not direct or consistent, suggesting that the formation of ghost colonies from living colonies and their appearance within the water column were not tightly coupled. Given their relative scarcity and low carbon content, it is unlikely that ghost colonies contribute substantially to vertical flux; however, it is possible that we did not sample periods of major flux events, and as a result minimized the importance of ghost colonies to vertical flux. They do, however, represent a poorly documented feature of polar haptophyte life cycles.
    Description: This research was supported by grants from the National Science Foundation (ANT-0944254 and ANT-0944165). HMS and EEP acknowledge support of the Gordon and Betty Moore Foundation (Grant #2649) for image informatics development.
    Description: 2018-06-01
    Keywords: Phaeocystis ; Mesoscale ; Ross Sea, Antarctica ; Ghost colonies ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...