GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (7)
Document type
Language
Years
Year
  • 1
  • 2
    Publication Date: 2020-02-12
    Description: Central elements of the TERENO network are “terrestrial observatories” at the catchment scale which were selected in climate sensitive regions of Germany for the regional analyses of climate change impacts. Within these observatories small scale research facilities and test areas are placed in order to accomplish energy, water, carbon and nutrient process studies across the different compartments of the terrestrial environment. Following a hierarchical scaling approach (point-plot-field) these detailed information and the gained knowledge will be transferred to the regional scale using integrated modelling approaches. Furthermore, existing research stations are enhanced and embedded within the observatories. In addition, mobile measurement platforms enable monitoring of dynamic processes at the local scale up to the determination of spatial pattern at the regional scale are applied within TERENO.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The aim of TERENO (TERrestrial ENvironmental Observatories) is to collect long-term observation data on the hydrosphere, biosphere, pedosphere, lower atmosphere and anthroposphere along multiple spatial and temporal gradients in climate sensitive regions across Germany. The lysimeter-network SOILCan was installed as a part of TERENO between March and December 2010 within the four observatories. It represents a long-term large-scale experiment to study the effects of climate and management changes in terrestrial ecosystems, with particular focus on the impact of these changes on water, energy and matter fluxes into groundwater and atmosphere. SOILCan primarily focuses on soil hydrology, the carbon and nutrient cycle and plant species diversity. Time series measurements of states and fluxes at high spatial and temporal resolution in the soil and biosphere are combined with remote sensing information for the development and calibration of process-based models simulating impacts of climate change in soil processes at field to regional scale. Within the framework of SOILCan, 132 fully automated lysimeter systems were installed at 14 highly equipped experimental field sites across the four TERENO observatories. Relevant state variables of grassland and arable ecosystems are monitored characterizing climate, hydrology and matter fluxes into the atmosphere and within the hydrosphere as well as plant species diversity. Lysimeters are either being operated at or near their original sampling location or were transferred within or between the four TERENO observatories thereby using temperature and rainfall gradients to mimic future climatic conditions (space for time), which allow measuring impacts of climate change on terrestrial ecosystems. The lysimeters are cultivated as grassland (intensive, extensive and non-used) or arable land, the latter with a standardized crop rotation of winter wheat—winter barley—winter rye—oat. This publication describes the general design of the SOILCan experiment including a comprehensive description of the pedological characteristics of the different sites and presents a few exemplary results from the first years of operation.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-04
    Description: Integrated observation platforms have been set up to investigate consequences of global change within a terrestrial network of observatories (TERENO) in Germany. The aim of TERENO is to foster the understanding of water, energy, and matter fluxes in terrestrial systems, as well as their biological and physical drivers. Part of the Lower Rhine Valley-Eifel observatory of TERENO is located within the Eifel National Park. Recently, the National Park forest management started to promote the natural regeneration of near-natural beech forest by removing a significant proportion of the spruce forest that was established for timber production after World War II. Within this context, the effects of such a disturbance on forest ecosystem functioning are currently investigated in a deforestation experiment in the Wustebach catchment, which is one of the key experimental research sites within the Lower Rhine Valley-Eifel observatory. Here, we present the integrated observation system of the Wustebach test site to exemplarily demonstrate the terrestrial observatory concept of TERENO that allows for a detailed monitoring of changes in hydrological and biogeochemical states and fluxes triggered by environmental disturbances. We present the observation platforms and the soil sampling campaign, as well as preliminary results including an analysis of data consistency. We specifically highlight the capability of integrated datasets to enable improved process understanding of the post-deforestation changes in ecosystem functioning.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-04
    Description: Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions. (C) 2016 Elsevier Ltd. All rights reserved.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-04
    Description: Understanding natural controls on N and C biogeochemical cycles is important to estimate human impacts on these cycles. This study examined the spatiotemporal relationships between time series of weekly monitored stream and groundwater N and C (assessed by NO3- and dissolved organic C [DOC]) in the forested Wustebach catchment (Germany). In addition to traditional correlation analysis, we applied wavelet transform coherence (WTC) analysis to study variations in the correlation and lag time between the N and C time series for different time scales. Median transit times were used to connect hydrologic and water chemistry data. We defined three stream-water groups: (i) subsurface runoff dominated locations with strong seasonal fluctuations in concentrations, short transit times, and strong negative C/N correlations with short time lags, (ii) groundwater dominated locations, with weaker seasonal fluctuations, longer transit times, and weaker C/N correlations with lags of several months, and (iii) intermediate locations, with moderate seasonal fluctuations, moderate transit times, and strong C/N correlations with short time lags. Water transit times could be identified as key drivers for the C/N relationship and we conclude that C and N transport in stream water can be explained by mixing of groundwater and subsurface runoff. Complemented by transit times and the hydrochemical time series, WTC analysis allowed us to discriminate between different water sources (groundwater vs. subsurface runoff). In conclusion, we found that in time series studies of hydrochemical data, e.g., DOC and NO3-, WTC analysis can be a viable tool to identify spatiotemporally dependent relationships in catchments.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-04
    Description: Current understanding of the variability in soil properties and their relationship to processes and spatial patterns in forested landscapes is limited due to the scarcity of datasets providing such information. Here we present a spatially highly resolved dataset (http://teodoor.icg.kfa-juelich.de/ibg3searchportal2/dispatch?metadata.detail.view.id=e3886301-7252-4142-b1a4-333dfe7f1ca4) that provides detailed information on the three-dimensional variability of biogeochemical properties in the Wustebach catchment (western Germany), a long-term environmental observation site of the TERENO (Terrestrial Environmental Observatories) project. High-resolution soil sampling was conducted, and physical and biogeochemical soil parameters were recorded per horizon. The dataset is helpful in the analysis of the spatial heterogeneity in biogeochemical properties within soil horizons and with depth through the soil profile. In addition, it shows links between hydrological and biogeochemical properties and processes within the system. Overall, the dataset provides a high-resolution view into (re) cycling, leaching, and storage of nutrients on the catchment scale in a forested headwater catchment.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...