GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 8, No. 5 ( 2016-05-17), p. 414-
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 11 ( 2016-11-25), p. 5607-5620
    Abstract: Abstract. We present the set-up and a scientific application of the Stratospheric Air Sub-sampler (SAS), a device to collect and to store the vertical profile of air collected with an AirCore (Karion et al., 2010) in numerous sub-samples for later analysis in the laboratory. The SAS described here is a 20 m long 1/4 inch stainless steel tubing that is separated by eleven valves to divide the tubing into 10 identical segments, but it can be easily adapted to collect smaller or larger samples. In the collection phase the SAS is directly connected to the outlet of an optical analyzer that measures the mole fractions of CO2, CH4 and CO from an AirCore sampler. The stratospheric part (or if desired any part of the AirCore air) is then directed through the SAS. When the SAS is filled with the selected air, the valves are closed and the vertical profile is maintained in the different segments of the SAS. The segments can later be analysed to retrieve vertical profiles of other trace gas signatures that require slower instrumentation. As an application, we describe the coupling of the SAS to an analytical system to determine the 17O excess of CO2, which is a tracer for photochemical processing of stratospheric air. For this purpose the analytical system described by Mrozek et al. (2015) was adapted for analysis of air directly from the SAS. The performance of the coupled system is demonstrated for a set of air samples from an AirCore flight in November 2014 near Sodankylä, Finland. The standard error for a 25 mL air sample at stratospheric CO2 mole fraction is 0.56 ‰ (1σ) for δ17O and 0.03 ‰ (1σ) for both δ18O and δ13C. Measured Δ17O(CO2) values show a clear correlation with N2O in agreement with already published data.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Measurement Techniques Vol. 11, No. 12 ( 2018-12-20), p. 6785-6801
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 12 ( 2018-12-20), p. 6785-6801
    Abstract: Abstract. We developed a new lightweight stratospheric air sampler (LISA). The LISA sampler is designed to collect four bag samples in the stratosphere during a balloon flight for CO2, CH4 and CO mole fraction measurements. It consists of four multi-layer foil (MLF) sampling bags, a custom-made manifold, and a diaphragm pump, with a total weight of ∼2.5 kg. A series of laboratory storage tests were performed to assess the stability of CO2, CH4 and CO mole fractions in both MLF and Tedlar bags. The MLF bag was chosen due to its better overall performance than the Tedlar bag for the three species CO2, CH4 and CO. Furthermore, we evaluated the performance of the pump under low pressure conditions to optimize a trade-off between the vertical resolution and the sample size. The LISA sampler was flown on the same balloon flight with an AirCore in Sodankylä, Finland (67.368∘ N, 26.633∘ E, 179 m a.s.l.), on 26 April and 4–7 September 2017. A total of 15 stratospheric air samples were obtained during the ascent of four flights. The sample size ranges between 800 and 180 mL for the altitude between 12 and 25 km, with the corresponding vertical resolution ranging from 0.5 to 1.5 km. The collected air samples were analysed for CO2, CH4 and CO mole fractions, and evaluated against AirCore retrieved profiles, showing mean differences of 0.84 ppm for CO2, 1.8 ppb for CH4 and 6.3 ppb for CO, respectively. High-accuracy stratospheric measurements of greenhouse gas mole fractions are useful to validate remote sensing measurements from ground and from space, which has been performed primarily by comparison with collocated aircraft measurements (0.15–13 km), and more recently with AirCore observations (0–30 km). While AirCore is capable of achieving high-accuracy greenhouse gas mole fraction measurements, it is challenging to obtain accurate altitude registration for AirCore measurements. The LISA sampler provides a viable low-cost tool for retrieving stratospheric air samples for greenhouse gas measurements that is complementary to AirCore. Furthermore, the LISA sampler is advantageous in both the vertical resolution and sample size for performing routine stratospheric measurements of the isotopic composition of trace gases.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 6 ( 2017-03-31), p. 4387-4399
    Abstract: Abstract. The volatility distribution of secondary organic aerosols that formed and had undergone aging – i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase – was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol−1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m∕z 43 (f43) and m∕z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP =  80 kJ mol−1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 46, No. 3 ( 2018-02-16), p. 1124-1138
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Bioelectromagnetics, Wiley, Vol. 39, No. 5 ( 2018-07), p. 405-413
    Abstract: Low‐energy pulsed electromagnetic field (PEMF) therapy has been suggested as a promising therapy to increase microcirculation, which is of great concern in patients with fibromyalgia. This study evaluated the effectiveness of PEMF therapy on the treatment of fibromyalgia. A group of 108 women with fibromyalgia were allocated to a 12‐week treatment period with an active Bio‐Electro‐Magnetic‐Energy‐Regulation (BEMER) device and a similar treatment period with an inactive device. Each patient received active and sham treatments in a random order. Pain and stiffness were assessed on a visual analog scale (VAS, scale 0–100 mm), and functional status was assessed by the Fibromyalgia Impact Questionnaire (FIQ). Mean VAS pain scores before the active and sham treatment periods were 66 (SD 22) and 63 (SD 22), respectively. After treatment periods, mean VAS pain scores had decreased significantly in active treatment, −12, 95% CI [−18, −6] , and in sham treatment, −11, 95% CI [−17, −5]. Similarly, the decrease in stiffness and FIQ index after both treatments was statistically significant. However, per‐protocol analysis showed no differences between active and sham treatments at any of the outcomes. This study demonstrated that low‐energy PEMF therapy was not efficient in reducing pain and stiffness or in improving functioning in women with fibromyalgia. Bioelectromagnetics. 39:405–413, 2018. © 2018 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0197-8462 , 1521-186X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2001228-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Remote Sensing, MDPI AG, Vol. 8, No. 12 ( 2016-11-29), p. 982-
    Abstract: n/a
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 2 ( 2019-03-01), p. 1393-1408
    Abstract: Abstract. Nitrous oxide (N2O) is an important greenhouse gas and it can also generate nitric oxide, which depletes ozone in the stratosphere. It is a common target species of ground-based Fourier transform infrared (FTIR) near-infrared (TCCON) and mid-infrared (NDACC) measurements. Both TCCON and NDACC networks provide a long-term global distribution of atmospheric N2O mole fraction. In this study, the dry-air column-averaged mole fractions of N2O (XN2O) from the TCCON and NDACC measurements are compared against each other at seven sites around the world (Ny-Ålesund, Sodankylä, Bremen, Izaña, Réunion, Wollongong, Lauder) in the time period of 2007–2017. The mean differences in XN2O between TCCON and NDACC (NDACC–TCCON) at these sites are between −3.32 and 1.37 ppb (−1.1 %–0.5 %) with standard deviations between 1.69 and 5.01 ppb (0.5 %–1.6 %), which are within the uncertainties of the two datasets. The NDACC N2O retrieval has good sensitivity throughout the troposphere and stratosphere, while the TCCON retrieval underestimates a deviation from the a priori in the troposphere and overestimates it in the stratosphere. As a result, the TCCON XN2O measurement is strongly affected by its a priori profile. Trends and seasonal cycles of XN2O are derived from the TCCON and NDACC measurements and the nearby surface flask sample measurements and compared with the results from GEOS-Chem model a priori and a posteriori simulations. The trends and seasonal cycles from FTIR measurement at Ny-Ålesund and Sodankylä are strongly affected by the polar winter and the polar vortex. The a posteriori N2O fluxes in the model are optimized based on surface N2O measurements with a 4D-Var inversion method. The XN2O trends from the GEOS-Chem a posteriori simulation (0.97±0.02 (1σ) ppb yr−1) are close to those from the NDACC (0.93±0.04 ppb yr−1) and the surface flask sample measurements (0.93±0.02 ppb yr−1). The XN2O trend from the TCCON measurements is slightly lower (0.81±0.04 ppb yr−1) due to the underestimation of the trend in TCCON a priori simulation. The XN2O trends from the GEOS-Chem a priori simulation are about 1.25 ppb yr−1, and our study confirms that the N2O fluxes from the a priori inventories are overestimated. The seasonal cycles of XN2O from the FTIR measurements and the model simulations are close to each other in the Northern Hemisphere with a maximum in August–October and a minimum in February–April. However, in the Southern Hemisphere, the modeled XN2O values show a minimum in February–April while the FTIR XN2O retrievals show different patterns. By comparing the partial column-averaged N2O from the model and NDACC for three vertical ranges (surface–8, 8–17, 17–50 km), we find that the discrepancy in the XN2O seasonal cycle between the model simulations and the FTIR measurements in the Southern Hemisphere is mainly due to their stratospheric differences.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 11 ( 2019-11-18), p. 5979-5995
    Abstract: Abstract. Column-averaged dry-air mole fraction of CO (XCO) measurements are obtained from two ground-based Fourier transform infrared (FTIR) spectrometer networks: the Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC). In this study, the differences between the TCCON and NDACC XCO measurements are investigated and discussed based on six NDACC–TCCON sites using data over the period 2007–2017. A direct comparison shows that the NDACC XCO measurements are about 5.5 % larger than the TCCON data at Ny-Ålesund, Bremen, and Izaña (Northern Hemisphere), and the absolute bias between the NDACC and TCCON data is within 2 % at Saint-Denis, Wollongong and Lauder (Southern Hemisphere). The hemispheric dependence of the bias is mainly attributed to their smoothing errors. The systematic smoothing error of the TCCON XCO data varies in the range between 0.2 % (Bremen) and 7.9 % (Lauder), and the random smoothing error varies in the range between 2.0 % and 3.6 %. The systematic smoothing error of NDACC data is between 0.1 % and 0.8 %, and the random smoothing error of NDACC data is about 0.3 %. For TCCON data, the smoothing error is significant because it is higher than the reported uncertainty, particularly at Southern Hemisphere sites. To reduce the influence from the a priori profiles and different vertical sensitivities, the scaled NDACC a priori profiles are used as the common a priori profiles for comparing TCCON and NDACC retrievals. As a result, the biases between TCCON and NDACC XCO measurements become more consistent (5.6 %–8.5 %) with a mean value of 6.8 % at these sites. To determine the sources of the remaining bias, regular AirCore measurements at Orléans and Sodankylä are compared to co-located TCCON measurements. It is found that TCCON XCO measurements are 6.1 ± 1.6 % and 8.0 ± 3.2 % smaller than the AirCore measurements at Orléans and Sodankylä, respectively, indicating that the scaling factor of TCCON XCO data should be around 1.0000 instead of 1.0672. Further investigations should be carried out in the TCCON community to determine the correct scaling factor to be applied to the TCCON XCO data. This paper also demonstrates that the smoothing error must be taken into account when comparing FTIR XCO data, and especially TCCON XCO data, with model or satellite data.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 11 ( 2019-11-25), p. 6125-6141
    Abstract: Abstract. The Total Carbon Column Observing Network (TCCON) column-averaged dry air mole fraction of CH4 (XCH4) measurements have been widely used to validate satellite observations and to estimate model simulations. The GGG2014 code is the standard TCCON retrieval software used in performing a profile scaling retrieval. In order to obtain several vertical pieces of information in addition to the total column, in this study, the SFIT4 retrieval code is applied to retrieve the CH4 mole fraction vertical profile from the Fourier transform spectrometer (FTS) spectrum at six sites (Ny-Ålesund, Sodankylä, Bialystok, Bremen, Orléans and St Denis) during the time period of 2016–2017. The retrieval strategy of the CH4 profile retrieval from ground-based FTS near-infrared (NIR) spectra using the SFIT4 code (SFIT4NIR) is investigated. The degree of freedom for signal (DOFS) of the SFIT4NIR retrieval is about 2.4, with two distinct pieces of information in the troposphere and in the stratosphere. The averaging kernel and error budget of the SFIT4NIR retrieval are presented. The data accuracy and precision of the SFIT4NIR retrievals, including the total column and two partial columns (in the troposphere and stratosphere), are estimated by TCCON standard retrievals, ground-based in situ measurements, Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) satellite observations, TCCON proxy data and AirCore and aircraft measurements. By comparison against TCCON standard retrievals, it is found that the retrieval uncertainty of SFIT4NIR XCH4 is similar to that of TCCON standard retrievals with systematic uncertainty within 0.35 % and random uncertainty of about 0.5 %. The tropospheric and stratospheric XCH4 from SFIT4NIR retrievals are assessed by comparison with AirCore and aircraft measurements, and there is a 1.0 ± 0.3 % overestimation in the SFIT4NIR tropospheric XCH4 and a 4.0 ± 2.0 % underestimation in the SFIT4NIR stratospheric XCH4, which are within the systematic uncertainties of SFIT4NIR-retrieved partial columns in the troposphere and stratosphere respectively.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...