GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Measurement Techniques Vol. 9, No. 11 ( 2016-10-31), p. 5265-5279
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 11 ( 2016-10-31), p. 5265-5279
    Abstract: Abstract. We present a compact and versatile cryofocusing–thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. −80 °C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography – mass spectrometry (GC–MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately −80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol−1) to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC–MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers – coupled with a Mass Spectrometer).
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 16 ( 2016-08-25), p. 10573-10589
    Abstract: Abstract. The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ =  380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ =  380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV  〉  8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 3 ( 2016-03-14), p. 1051-1062
    Abstract: Abstract. MIPAS-Envisat is a satellite-borne sensor which measured vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation of the MIPAS-Envisat operational retrieval (version 6.0) of N2O, CH4, CFC-12, and CFC-11 by the European Space Agency (ESA). The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations, we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS in early 2005. Retrieval results for N2O, CH4, and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. The more recent low spectroscopic resolution data above 20 km altitude show agreement with the combined uncertainties, while there is a tendency of the earlier high spectral resolution data set to underestimate these species above 25 km. The earlier high spectral resolution data show a significant overestimation of the mixing ratios for N2O, CH4, and CFC-12 below 20 km. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6.0 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios at all altitudes.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Chemistry and Physics Vol. 17, No. 6 ( 2017-03-20), p. 3785-3797
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 6 ( 2017-03-20), p. 3785-3797
    Abstract: Abstract. The fractional release factor (FRF) gives information on the amount of a halocarbon that is released at some point into the stratosphere from its source form to the inorganic form, which can harm the ozone layer through catalytic reactions. The quantity is of major importance because it directly affects the calculation of the ozone depletion potential (ODP). In this context time-independent values are needed which, in particular, should be independent of the trends in the tropospheric mixing ratios (tropospheric trends) of the respective halogenated trace gases. For a given atmospheric situation, such FRF values would represent a molecular property.We analysed the temporal evolution of FRF from ECHAM/MESSy Atmospheric Chemistry (EMAC) model simulations for several halocarbons and nitrous oxide between 1965 and 2011 on different mean age levels and found that the widely used formulation of FRF yields highly time-dependent values. We show that this is caused by the way that the tropospheric trend is handled in the widely used calculation method of FRF.Taking into account chemical loss in the calculation of stratospheric mixing ratios reduces the time dependence in FRFs. Therefore we implemented a loss term in the formulation of the FRF and applied the parameterization of a mean arrival time to our data set.We find that the time dependence in the FRF can almost be compensated for by applying a new trend correction in the calculation of the FRF. We suggest that this new method should be used to calculate time-independent FRFs, which can then be used e.g. for the calculation of ODP.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Chemistry and Physics Vol. 18, No. 2 ( 2018-01-19), p. 601-619
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 2 ( 2018-01-19), p. 601-619
    Abstract: Abstract. Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that – under otherwise unchanged conditions – the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from the EMAC model. We show that while the expected changes in stratospheric transport lead to significant differences between EESC and modelled inorganic halogen loading at constant mean age, EESC is a reasonable proxy for modelled inorganic halogen on a constant pressure level.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Chemistry and Physics Vol. 17, No. 11 ( 2017-06-12), p. 6825-6838
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 11 ( 2017-06-12), p. 6825-6838
    Abstract: Abstract. Mean age of stratospheric air can be derived from observations of sufficiently long-lived trace gases with approximately linear trends in the troposphere. Mean age can serve as a tracer to investigate stratospheric transport and long-term changes in the strength of the overturning Brewer–Dobson circulation of the stratosphere. For this purpose, a low-cost method is required in order to allow for regular observations up to altitudes of about 30 km. Despite the desired low costs, high precision and accuracy are required in order to determine mean age. We present balloon-borne AirCore observations from two midlatitude sites: Timmins in Ontario/Canada and Lindenberg in Germany. During the Timmins campaign, five AirCores sampled air in parallel with a large stratospheric balloon and were analysed for CO2, CH4 and partly CO. We show that there is good agreement between the different AirCores (better than 0.1 %), especially when vertical gradients are small. The measurements from Lindenberg were performed using small low-cost balloons and yielded very comparable results. We have used the observations to extend our long-term data set of mean age observations at Northern Hemisphere midlatitudes. The time series now covers more than 40 years and shows a small, statistically non-significant positive trend of 0.15 ± 0.18 years decade−1. This trend is slightly smaller than the previous estimate of 0.24 ± 0.22 years decade−1 which was based on observations up to the year 2006. These observations are still in contrast to strong negative trends of mean age as derived from some model calculations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 2 ( 2019-01-24), p. 921-940
    Abstract: Abstract. Climate models consistently predict an acceleration of the Brewer–Dobson circulation (BDC) due to climate change in the 21st century. However, the strength of this acceleration varies considerably among individual models, which constitutes a notable source of uncertainty for future climate projections. To shed more light upon the magnitude of this uncertainty and on its causes, we analyse the stratospheric mean age of air (AoA) of 10 climate projection simulations from the Chemistry-Climate Model Initiative phase 1 (CCMI-I), covering the period between 1960 and 2100. In agreement with previous multi-model studies, we find a large model spread in the magnitude of the AoA trend over the simulation period. Differences between future and past AoA are found to be predominantly due to differences in mixing (reduced aging by mixing and recirculation) rather than differences in residual mean transport. We furthermore analyse the mixing efficiency, a measure of the relative strength of mixing for given residual mean transport, which was previously hypothesised to be a model constant. Here, the mixing efficiency is found to vary not only across models, but also over time in all models. Changes in mixing efficiency are shown to be closely related to changes in AoA and quantified to roughly contribute 10 % to the long-term AoA decrease over the 21st century. Additionally, mixing efficiency variations are shown to considerably enhance model spread in AoA changes. To understand these mixing efficiency variations, we also present a consistent dynamical framework based on diffusive closure, which highlights the role of basic state potential vorticity gradients in controlling mixing efficiency and therefore aging by mixing.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: La Météorologie, Meteo et Climat, Societe Francaise de la Meteorologie et du Climat, Vol. 8, No. 91 ( 2015), p. 2-
    Type of Medium: Online Resource
    ISSN: 0026-1181
    Language: French
    Publisher: Meteo et Climat, Societe Francaise de la Meteorologie et du Climat
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Science Letters, Wiley, Vol. 19, No. 1 ( 2018-01)
    Abstract: Air masses in the convective outflows of four large convective systems near Borneo Island in Malaysia were sampled in the height range 11–13 km within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) FP7 European project in November and December 2011. Correlated enhancements of CO, CH 4 and the short‐lived halogen species (CH 3 I and CHBr 3 ) were detected when the aircraft crossed the anvils of the four systems. These enhancements were interpreted as the fingerprint of vertical transport from the boundary layer by the convective updraft and then horizontal advection in the outflow. For the four observations, the fraction f of air from the boundary layer ranged between 15 and 67%, showing the variability in transport efficiency depending on the dynamics of the convective system.
    Type of Medium: Online Resource
    ISSN: 1530-261X , 1530-261X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2025884-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 5 ( 2018-03-08), p. 3369-3385
    Abstract: Abstract. In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the mean age of air values derived from them. In this study, we investigated five potential age of air tracers – the perfluorocarbons CF4, C2F6 and C3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 – and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these new tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our results showed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the University of East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger mean ages on three policy-relevant parameters – stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials – is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...