GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (2)
  • 2015-2019  (2)
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Ion exchange. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (230 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Nanotechnology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (282 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030049492
    Serie: Environmental Chemistry for a Sustainable World Series ; v.31
    DDC: 541.395
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Nanophotocatalysts for Fuel Production -- 1.1 Introduction -- 1.2 Quantum Dot Semiconductors -- 1.3 Synthesis of Quantum Dots -- 1.4 Application of Quantum Dots for Fuel Production -- 1.5 Conclusion -- References -- Chapter 2: Highly Stable Metal Oxide-Based Heterostructured Photocatalysts for an Efficient Photocatalytic Hydrogen Production -- 2.1 Photocatalysis -- 2.1.1 Photocatalytic Mechanism -- 2.1.2 Band Edge Positions -- 2.2 Semiconducting Metal Oxides for Photocatalytic Water Splitting -- 2.2.1 Metal Oxide-Based Heterostructured Photocatalysts -- 2.2.1.1 Energy Structure of TiO2 -- 2.2.1.2 Lattice Structure of TiO2 -- 2.3 The Challenges in Photocatalytic H2 Production Using TiO2 Particulate Systems -- 2.4 Strategies for Improving TiO2 Photocatalytic Activity -- 2.4.1 Addition of Sacrificial Reagents -- 2.4.2 TiO2-Based Semiconductors Under UV Light Irradiation -- 2.4.3 Photocatalytic Performance of TiO2 Under Visible Irradiation -- 2.4.4 Functionalization of TiO2 with Carbon Nanomaterials -- 2.4.4.1 Carbon Nanotubes -- 2.4.4.2 Graphene Oxide/Reduced Graphene Oxide (RGO) -- 2.5 Future Scope/Conclusions -- References -- Chapter 3: Novelty in Designing of Photocatalysts for Water Splitting and CO2 Reduction -- 3.1 Introduction -- 3.2 CO2 Reduction -- 3.2.1 Principles of CO2 Reduction -- 3.2.2 By-Products of CO2 Reduction -- 3.2.3 Synthesis of Nanoparticles -- 3.2.3.1 Doping of Photocatalyst -- 3.2.4 Commercial Challenges of CO2 Reduction -- 3.3 Water Splitting -- 3.3.1 The Basic Principle of Water Splitting -- 3.3.2 Photocatalyst for Water Splitting -- 3.3.2.1 Oxide-Based Photocatalyst -- 3.3.2.2 Nitride-Based Photocatalyst -- 3.3.3 Commercial Challenges of Water Splitting -- 3.4 Conclusion and Way Forward -- References. , Chapter 4: Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives -- 4.1 Introduction -- 4.2 Basic Principles of the Z-Scheme Reduction of CO2 -- 4.3 Advances in Z-Scheme Photocatalytic Reduction of CO2 -- 4.3.1 Z-Scheme Systems with Aqueous Shuttle Redox Mediator -- 4.3.2 All-Solid-State Z-Scheme Systems -- 4.3.3 Semiconductor/Metal-Complex Hybrid Z-Scheme Systems -- 4.3.4 Light Harvesting of Photocatalysts Utilized for the Z-Scheme CO2 Reduction -- 4.3.5 Cocatalyst Strategies for Z-Scheme CO2 Reduction -- 4.4 Summary and Outlook -- References -- Chapter 5: Photocatalysts for Artificial Photosynthesis -- 5.1 Introduction -- 5.2 General Photosynthesis Mechanism -- 5.3 Covalently Linked Molecular Systems for Artificial Photosynthesis -- 5.3.1 Porphyrin-Based Donor-Acceptor Molecular Systems -- 5.3.2 Subphthalocyanine-Based Light-Harvesting Complexes -- 5.3.3 BODIPY-Based Light-Harvesting Systems -- 5.4 Supramolecular Artificial Photosynthetic Systems -- 5.4.1 Metal-Ligand Interactions of Porphyrins/Naphthalocyanines with Electron Acceptors -- 5.4.2 Supramolecular Photosynthetic Complexes Via Crown Ether-Ammonium Cation Interactions -- 5.5 Conclusion -- References -- Chapter 6: Polymeric Semiconductors as Efficient Photocatalysts for Water Purification and Solar Hydrogen Production -- 6.1 Introduction -- 6.2 Photocatalysis -- 6.2.1 Basic Principles of Photocatalytic Reaction -- 6.2.2 Photocatalytic Properties -- 6.2.3 Photocatalytic Mechanism -- 6.3 Photocatalytic Functional Materials: Synthesis, Properties and Applications -- 6.3.1 Graphitic Carbon Nitride (g-C3N4) -- 6.3.1.1 Synthesis of Polymeric g-C3N4 -- 6.3.1.2 Photocatalytic Mechanism of g-C3N4 -- 6.3.1.3 Photodegradation of Chemical Pollutants Using g-C3N4 -- 6.3.1.4 Graphene Oxide-Based Hybrid Photocatalysts. , 6.3.2 Metal-Organic Framework (MOF)-Based Photocatalysts -- 6.3.2.1 Principles -- 6.3.2.2 Photocatalytic Applications of MOFs -- 6.3.3 TiO2-Based Hybrid Photocatalysts -- 6.3.3.1 Principles -- 6.3.3.2 Different Forms of TiO2 and Its Physicochemical Properties -- 6.3.3.3 Structure of TiO2 -- 6.3.3.4 Photocatalytic Mechanism of TiO2 -- 6.3.3.5 Hybrid Photocatalysts Based on TiO2 and Organic Conjugated Polymers -- 6.3.3.5.1 Properties of Polythiophene -- 6.3.3.5.2 Properties of Polyaniline -- 6.3.3.5.3 Properties of Polypyrrole -- 6.3.3.5.4 Synthesis of TiO2-Based Hybrid Photocatalysts with Different Organic Conjugated Polymers -- 6.3.3.5.5 Characterization of TiO2/Conjugated Polymer-Based Hybrid Catalysts -- 6.3.3.5.6 Antibacterial Activity of Photocatalysts -- 6.3.3.6 Environmental Application of Different Photocatalysts -- 6.3.3.6.1 Water Purification -- 6.3.4 Graphene Oxide (GO)-Based Photocatalyst for Dye Degradation and H2 Evolution -- 6.3.4.1 Photodegradation of Chemical Pollutants -- 6.3.4.2 Hydrogen (H2) Evolution Reaction by g-C3N4-Based Functional Photocatalysts -- 6.4 Conclusion -- References -- Chapter 7: Advances and Innovations in Photocatalysis -- 7.1 Introduction -- 7.2 Photocatalysts for Hydrogen Production -- 7.2.1 Nature of Different Sacrificial Agents and Typical Mechanism of Photoreforming -- 7.2.1.1 Methanol as a Sacrificial Agent -- 7.2.1.2 Ethanol as a Sacrificial Agent -- 7.2.1.3 Glycerol as a Sacrificial Agent -- 7.2.1.4 Glucose as a Sacrificial Agent -- 7.2.2 Hydrogen Production from Photocatalytic Wastewater Treatment -- 7.3 Photocatalysts Developed for the Synthesis of Organic Compounds in Mild Conditions -- 7.3.1 The Starting Point -- 7.3.2 The Effect of Supporting Metal Oxides on Titania on Selectivity -- 7.3.3 The Effect of Titania Dopant -- 7.3.4 The Effect of Titania Surface Area. , 7.3.5 The Effect of Substituting Titania -- 7.3.6 The Effect of Reactor and Illumination -- 7.3.7 Cyclohexanol and Cyclohexanone by Gas-Phase Photocatalytic Oxidation? -- 7.4 Photocatalytic Membrane Reactors -- 7.5 Concluding Remarks -- References -- Chapter 8: Solar Light Active Nano-photocatalysts -- 8.1 Introduction -- 8.2 Mechanism of Semiconductor-Mediated Photocatalysis -- 8.2.1 Nano-TiO2 as Photocatalysts -- 8.2.2 Nano-ZnO as Photocatalysts -- 8.2.3 Graphitic Carbon Nitride as Photocatalysts -- 8.2.4 Titanates as Photocatalysts -- 8.2.5 Nano-metal Sulphides as Photocatalysts -- 8.3 Strategies for Making Solar/Visible Light Active Photocatalysts -- 8.3.1 Metal/Non-metal Doping -- 8.3.2 Addition of Photosensitive Materials -- 8.3.3 Construction of Heterojunctions/Composites -- 8.3.4 Construction of Nanohybrid Materials -- 8.3.5 Surface Modification -- 8.4 Conclusion -- References -- Chapter 9: High-Performance Photocatalysts for Organic Reactions -- 9.1 Introduction -- 9.2 Photocatalytic Oxidation of Alcohols -- 9.3 Selective Oxidation and Oxidative Coupling of Amines -- 9.4 Photocatalytic Cyanation -- 9.5 Photocatalytic Cycloaddition and C-C Bond Formation Reactions -- 9.6 Miscellaneous Reactions -- 9.7 Outlook -- 9.8 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...