GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biogeochemistry  (1)
  • Climate prediction  (1)
  • Climate warming  (1)
  • 2015-2019  (3)
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gewirtzman, J., Tang, J., Melillo, J. M., Werner, W. J., Kurtz, A. C., Fulweiler, R. W., & Carey, J. C. Soil warming accelerates biogeochemical silica cycling in a temperate forest. Frontiers in Plant Science, 10, (2019): 1097, doi:10.3389/fpls.2019.01097.
    Description: Biological cycling of silica plays an important role in terrestrial primary production. Soil warming stemming from climate change can alter the cycling of elements, such as carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine long-term forest silica cycling under ambient and warmed conditions over a 15-year period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we measured silica concentrations in organic and mineral soils, and in the foliage and litter of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating on dissolved silica in the soil solution, and conducted a litter decomposition experiment using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We find that tree foliage maintained constant silica concentrations in the control and warmed plots, which, coupled with productivity enhancements under warming, led to an increase in total plant silica uptake. We also find that warming drove an acceleration in the release of silica from decaying litter in three of the four species we examined, and a substantial increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi stocks with warming. Together, our data indicate that warming increases the magnitude of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial to marine systems.
    Description: This research was supported by the National Science Foundation (NSF PLR-1417763 to JT), the Geological Society of America (Stephen G. Pollock Undergraduate Research Grant to JG), the Institute at Brown for Environment and Society, and the Marine Biological Laboratory. Sample analysis and Fulweiler’s involvement were supported by Boston University and a Bullard Fellowship from Harvard University. The soil warming experiment was supported by the National Science Foundation (DEB-0620443) and Department of Energy (DE-FC02-06-ER641577 and DE-SC0005421).
    Keywords: Silica ; Climate change ; Soil ; Warming ; Phytoliths ; Plants ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global and Planetary Change 142 (2016): 28-40, doi:10.1016/j.gloplacha.2016.04.011.
    Description: In the circumpolar north (45-90°N), permafrost plays an important role in vegetation and carbon (C) dynamics. Permafrost thawing has been accelerated by the warming climate and exerts a positive feedback to climate through increasing soil C release to the atmosphere. To evaluate the influence of permafrost on C dynamics, changes in soil temperature profiles should be considered in global C models. This study incorporates a sophisticated soil thermal model (STM) into a dynamic global vegetation model (LPJ-DGVM) to improve simulations of changes in soil temperature profiles from the ground surface to 3 m depth, and its impacts on C pools and fluxes during the 20th and 21st centuries.With cooler simulated soil temperatures during the summer, LPJ-STM estimates ~0.4 Pg C yr-1 lower present-day heterotrophic respiration but ~0.5 Pg C yr-1 higher net primary production than the original LPJ model resulting in an additional 0.8 to 1.0 Pg C yr-1 being sequestered in circumpolar ecosystems. Under a suite of projected warming scenarios, we show that the increasing active layer thickness results in the mobilization of permafrost C, which contributes to a more rapid increase in heterotrophic respiration in LPJ-STM compared to the stand-alone LPJ model. Except under the extreme warming conditions, increases in plant production due to warming and rising CO2, overwhelm the enhanced ecosystem respiration so that both boreal forest and arctic tundra ecosystems remain a net C sink over the 21st century. This study highlights the importance of considering changes in the soil thermal regime when quantifying the C budget in the circumpolar north.
    Description: This research is supported by funded projects to Q. Z. National Science Foundation (NSF- 1028291 and NSF- 0919331), the NSF Carbon and Water in the Earth Program (NSF-0630319), the NASA Land Use and Land Cover Change program (NASA- NNX09AI26G), and Department of Energy (DE-FG02-08ER64599).
    Description: 2017-05-03
    Keywords: Soil thermal regime ; Permafrost degradation ; Active layer ; Climate warming ; Carbon budget
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather Climate and Society 11(3), (2019):465-487, doi: 10.1175/WCAS-D-18-0134.1.
    Description: As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.
    Description: This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.
    Description: 2020-05-21
    Keywords: North America ; Climate prediction ; Planning ; Policy ; Risk assessment ; Societal impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...