GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1)
  • BIOACID; Biological Impacts of Ocean Acidification; KOSMOS_2011_Bergen; MESO; Mesocosm experiment; Raunefjord  (1)
  • 2015-2019  (1)
Document type
  • Data  (1)
Source
Keywords
Publisher
Years
  • 2015-2019  (1)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Boxhammer, Tim; Larsen, Aud; Hildebrandt, Nicole; Schulz, Kai Georg; Riebesell, Ulf (2016): Influence of plankton community structure on the sinking velocity of marine aggregates. Global Biogeochemical Cycles, 30(8), 1145-1165, https://doi.org/10.1002/2016GB005372
    Publication Date: 2024-04-27
    Description: About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80–400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2–2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph‐dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of ~1500 cells/mL accelerate sinking by about 35–40%, which we estimate (by one‐dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; KOSMOS_2011_Bergen; MESO; Mesocosm experiment; Raunefjord
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...