GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate - Biogeochemistry Interactions in the Tropical Ocean; File content; File format; File name; File size; Model; Sea-turtle_model; SFB754; Uniform resource locator/link to model result file  (1)
  • Analysis; Atlantic; Atlantic_Larval_Dispersal_Modelling_Experiment; Barbados_Prism_Kick_em_Jenny_crater_(KJC); Barbados_Prism_Trinidad_prism_(TRI); Barbados Prism; Bathymodiolus; Binary Object; Binary Object (File Size); Binary Object (Media Type); Climate change predictions; DATE/TIME; ELEVATION; Event label; EXP; Experiment; Experiment duration; File content; Gigantidas; Gulf_of_Guinea_Guiness_(GUIN); Gulf_of_Guinea_Nigeria_margin_(NM); Gulf_of_Guinea_West_Africa_margin_(WAM); Gulf_of_Mexico_Alaminos_Canyon_(AC); Gulf_of_Mexico_Brine_Pool_(BP); Gulf_of_Mexico_Louisiana_Slope_(LS); Gulf of Guinea; Gulf of Mexico; iAtlantic; Index; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; larval dispersal modelling; LATITUDE; Location; LONGITUDE; Mid-Atlantic_Ridge_Logatchev_seeps_(LOG); Mid-Atlantic Ridge; Model; N_Mid-Atlantic_Ridge_Atlantis_Fracture_Zone_(LOST); NE_Atlantic_margin_Gulf_of_Cadiz_(GC); NE_Atlantic_margin_SWIM_fault_(SWIM); NE Atlantic margin; North_Brazil_margin_Amazon_fan_(AM); North Brazil margin; North Mid-Atlantic Ridge; Ocean and sea region; Particles; Quantile; Regime; seep mussels; South_Brazil_margin_Sao_Paulo_1_(SP); South_Brazil_margin_Sao_Paulo_2_(SPD); South Brazil margin; Speed, swimming; Temperature, water; US_Atlantic_Margin_Baltimore_Canyon_(BC); US_Atlantic_Margin_Bodie_Island_(BI); US_Atlantic_Margin_New_England_(NE); US_Atlantic_Margin_Norfolk_Canyon_(NC); US Atlantic Margin; VIKING20X; West_Africa_Margin_Arguin_bank_(ARG); West_Africa_Margin_Cadamostro_Seamount_(CS); West Africa Margin
  • Indian Ocean
  • 2015-2019  (2)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Scott, Rebecca; Biastoch, Arne; Agamboue, Pierre D; Bayer, Till; Boussamba, Francois L; Formia, Angela; Godley, Brendan J; Mabert, Brice D K; Manfoumbi, Jean C; Schwarzkopf, Franziska; Sounguet, Guy-Philippe; Wagner, Patrick; Witt, Matthew J (2017): Spatio-temporal variation in ocean current-driven hatchling dispersion: Implications for the world's largest leatherback sea turtle nesting region. Diversity and Distributions, https://doi.org/10.1111/ddi.12554
    Publication Date: 2023-10-28
    Description: This data set describes the location of virtual floats representing turtle hatchlings throughout 60 modeled years. Floats were constrained to remain within depths of 0-6 m due to the positive buoyancy of hatchlings. Floats were first assigned to one of 20,000 random release locations within a large release area 125-400 km offshore from nesting beaches throughout the Republic/Democratic Republic of the Congo, Gabon and Equatorial Guinea spanning latitudes of c. 6°S to 3.5°N. For each month over the 4-month long hatching season (January-April), each of the 20,000 floats was assigned a random release day and drift simulations ran every year during the period 1960-2007 resulting in drift trajectories of approx. 4 million virtual floats. See Scott et al., 2017, Spatio-temporal variation in ocean current-driven hatchling dispersion: Implications for the world's largest leatherback sea turtle nesting region. Diversity Distrib, http://dx.doi.org/10.1111%2Fddi.12554 for details as to the model parameters. Each data set consists of data on the float ID (number 1,2,3 etc..) and its trajectory attributes (latitude/longitude) at each time step. Data are also provided on the temperature, salinity and density of the float at its respective position/time step. Data sets are sorted by float release date, and contain one data file for each year. Each data file has 11 columns, which contain the following data: float id, longitude, latitude, depth, time step, temperature, salinity, density, no time steps since start, distance to start point, bearing from start point
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; File content; File format; File name; File size; Model; Sea-turtle_model; SFB754; Uniform resource locator/link to model result file
    Type: Dataset
    Format: text/tab-separated-values, 60 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1739-1751, doi:10.1175/JCLI-D-16-0200.1.
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Description: This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation, as well as the Ocean Climate Change Institute and the Investment in Science Fund at WHOI.
    Description: 2017-08-15
    Keywords: Indian Ocean ; Ocean dynamics ; Climate variability ; Multidecadal variability ; Pacific decadal oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...