GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI  (2)
  • 2015-2019  (2)
Document type
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Max, Lars; Rippert, Nadine; Lembke-Jene, Lester; Mackensen, Andreas; Nürnberg, Dirk; Tiedemann, Ralf (2016): Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions. Paleoceanography, 32, 15 pp, https://doi.org/10.1002/2016PA002994
    Publication Date: 2023-06-21
    Description: We provide high-resolution foraminiferal stable carbon isotope (d13C) records from the subarctic Pacific and Eastern Equatorial Pacific (EEP) to investigate circulation dynamics between the extra-tropical and tropical North Pacific during the past 60 kyr. We measured the d13C composition of the epibenthic foraminiferal species Cibicides lobatulus from a shallow sediment core recovered from the western Bering Sea (SO201-2-101KL; 58°52.52' N, 170°41.45' E; 630 m water depth) to reconstruct past ventilation changes close to the source region of Glacial North Pacific Intermediate Water (GNPIW). Information regarding glacial changes in the d13C of sub-thermocline water masses in the EEP is derived from the deep-dwelling planktonic foraminifera Globorotaloides hexagonus at ODP Site 1240 (00°01.31' N, 82°27.76' W; 2921 m water depth). Apparent similarities in the long-term evolution of d13C between GNPIW, intermediate waters in the eastern tropical North Pacific and sub-thermocline water masses in the EEP suggest the expansion of relatively 13C-depleted, nutrient-enriched, and northern-sourced intermediate waters to the equatorial Pacific under glacial conditions. Further, it appears that additional influence of GNPIW to the tropical Pacific is consistent with changes in nutrient distribution and biological productivity in surface-waters of the glacial EEP. Our findings highlight potential links between North Pacific mid-depth circulation changes, nutrient cycling, and biological productivity in the equatorial Pacific under glacial boundary conditions.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rippert, Nadine; Max, Lars; Mackensen, Andreas; Cacho, Isabel; Povea, Patricia; Tiedemann, Ralf (2017): Alternating influence of northern versus southern-sourced water masses on the equatorial Pacific subthermocline during the past 240 ka. Paleoceanography, 32(11), 1256-1274, https://doi.org/10.1002/2017PA003133
    Publication Date: 2023-06-21
    Description: The Eastern Equatorial Pacific (EEP) is a key area to understand past oceanic processes that control atmospheric CO2 concentrations. Many studies argue for higher nutrient concentrations by enhanced nutrient transfer via Southern Ocean Intermediate Water (SOIW) to the low-latitude Pacific during glacials. Recent studies, however, argue against SOIW as the primary nutrient source, at least during early Marine Isotope Stage 2 (MIS 2), as proxy-data indicate that nutrients are better utilized in the Southern Ocean under glacial conditions. New results from the subarctic Pacific suggest that enhanced convection of nutrient-rich Glacial North Pacific Intermediate Water (GNPIW) contributes to changes in nutrient concentrations in equatorial sub-thermocline water masses during MIS 2. However, the interplay between SOIW versus GNPIW and its influence on the nutrient distribution in the EEP spanning more than one glacial cycle are still not understood. We present a carbon isotope (d13C) record of sub-thermocline waters derived from deep-dwelling planktonic foraminifera Globorotaloides hexagonus in the EEP, which is compared with published d13C records around the Pacific. Results indicate enhanced influence of GNPIW during MIS 6 and MIS 2 compared to today with largest contributions of northern-sourced intermediate waters during glacial maxima. These observations suggest a mechanistic link between relative contributions of northern and southern intermediate waters and past EEP nutrient concentrations. A switch from increased GNPIW (decreased SOIW) to diminished GNPIW (enhanced SOIW) influence on equatorial sub-thermocline waters is recognized during glacial terminations and marks changes to modern-like conditions in nutrient concentrations and biological productivity in the EEP.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...