GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASHES vent field  (1)
  • Mid-ocean ridge
  • Submarine volcanism
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 3945–3961, doi:10.1029/2018GC007632.
    Description: To investigate the initial phases of magmatism at the leading edge of the upwelling mantle plume, we mapped, photographed, and collected samples from two long, deep‐water lava flows located at the western base of the Galápagos Platform using the remotely operated vehicle Hercules. Lavas were recovered from four areas on the seafloor west of Fernandina volcano, including the western flow fronts of two deep‐water flows, heavily sedimented terrain between the two flows, and the eastern, shallower end of one flow. The sediment cover and morphologies are distinct between the western flow fronts and the eastern region based on seafloor imagery, suggesting that the long lava flows are not a single eruptive unit. Major and trace element concentrations reveal both tholeiitic and alkalic compositions and support the interpretation that multiple eruptive units comprise the deep‐water flows. Alkalic lavas have higher [La/Sm]N ratios (2.05–2.12) and total alkali contents (5.18–5.40) compared to tholeiitic lavas, which have [La/Sm]N ratios ranging from 1.64 to 1.68 and total alkali contents ranging from 3.07 to 4.08 wt%. Radiogenic isotope ratios are relatively homogeneous, suggesting a similar mantle source. We use petrologic models to assess three alternative mechanisms for the formation of the alkalic magmas: (1) high‐pressure crystallization of clinopyroxene, (2) mixing of high silica and mafic magmas, and (3) variable extents of melting of the same mantle source. Our modeling indicates that the alkalic samples form from lower extents of melting compared to the tholeiitic lavas and suggests that the deep‐water alkalic lavas are analogous to the initial, preshield building phase observed south of Hawaii and at the base of Loihi Seamount.
    Description: Dalio Explorer Fund; National Science Foundation (NSF) Grant Number: OCE‐1634952
    Description: 2019-04-25
    Keywords: Submarine volcanism ; Galápagos ; Alkalic magmatism ; Mantle plume ; Mantle melting ; Radiogenic isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 6205–6211, doi:10.1002/2016GL069430.
    Description: High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.
    Description: Royal Society of New Zealand Grant Number: GNS1003; New Zealand Ministry of Business, Innovation and Employment (MBIE) Grant Numbers: OCE-1131455, OCE-1337473, OCE-1131772; NSF
    Description: 2016-12-24
    Keywords: ASHES vent field ; Crustal magnetization ; Sentry AUV
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...