GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (5)
  • 2015-2019  (5)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Finnish Environment Institute | Supplement to: Spilling, Kristian; Paul, Allanah Joy; Virkkala, Niklas; Hastings, Tom; Lischka, Silke; Stuhr, Annegret; Bermúdez Monsalve, Rafael; Czerny, Jan; Boxhammer, Tim; Schulz, Kai Georg; Ludwig, Andrea; Riebesell, Ulf (2016): Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment. Biogeosciences, 13(16), 4707-4719, https://doi.org/10.5194/bg-13-4707-2016
    Publication Date: 2024-03-06
    Description: Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (〈 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Phase; Primary production, carbon assimilation (24 hr.), integrated; Respiration rate, oxygen
    Type: Dataset
    Format: text/tab-separated-values, 1218 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Aragonite saturation state; Baltic Sea; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; DATE/TIME; Day of experiment; Dissolved silica, colorimetric (Mullin & Riley, 1955); Entire community; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phase; Phosphorus, inorganic, dissolved; Primary production, carbon assimilation (24 hr.), integrated; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen; Salinity; Silicate; Temperate; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 5145 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Keywords: AA; Alkalinity, total; Ammonium; Aragonite saturation state; Autoanalyzer; Bicarbonate ion; Biogenic silica; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, total, particulate; Carbon/Nitrogen ratio; Carbon analyser; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; CN-analyser; Coast and continental shelf; Coulometric titration; DATE/TIME; Day of experiment; Entire community; Event label; Field experiment; Fluorometric; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gullmar Fjord, Skagerrak, Sweden; Hand-operated CTD (Sea&Sun Technology, CTD 60M); High Performance Liquid Chromatography (HPLC); KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Mesozooplankton, biomass as carbon; Mesozooplankton, biomass as nitrogen; Mesozooplankton, biomass as phosphorus; Nitrate and Nitrite; Nitrogen, organic, dissolved; Nitrogen, total, particulate; Nitrogen, total dissolved; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phosphorus, organic, dissolved; Phosphorus, particulate; Phosphorus, total dissolved; Salinity; Silicate; Spectrophotometric; Temperate; Temperature, water; Type; Vertical flux, biogenic silica; Vertical flux, biogenic silica, cumulated; Vertical flux, carbon; Vertical flux, carbon, cumulated; Vertical flux, nitrogen; Vertical flux, nitrogen, cumulated; Vertical flux, phosphorus; Vertical flux, phosphorus, cumulated; Volume
    Type: Dataset
    Format: text/tab-separated-values, 27282 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Riebesell, Ulf; Bach, Lennart Thomas; Bellerby, Richard G J; Bermúdez Monsalve, Rafael; Boxhammer, Tim; Czerny, Jan; Larsen, Aud; Ludwig, Andrea; Schulz, Kai Georg (2017): Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience, 10(1), 19-23, https://doi.org/10.1038/ngeo2854
    Publication Date: 2024-04-27
    Description: Coccolithophores -single-celled calcifying phytoplankton- are an important group of marine primary producers and the dominant builders of calcium carbonate globally. Coccolithophores form extensive blooms and increase the density and sinking speed of organic matter via calcium carbonate ballasting. Thereby, they play a key role in the marine carbon cycle. Coccolithophore physiological responses to experimental ocean acidification have ranged from moderate stimulation to substantial decline in growth and calcification rates, combined with enhanced malformation of their calcite platelets. Here we report on a mesocosm experiment conducted in a Norwegian fjord in which we exposed a natural plankton community to a wide range of CO2-induced ocean acidification, to test whether these physiological responses affect the ecological success of coccolithophore populations. Under high-CO2 treatments, Emiliania huxleyi, the most abundant and productive coccolithophore species, declined in population size during the pre-bloom period and lost the ability to form blooms. As a result, particle sinking velocities declined by up to 30% and sedimented organic matter was reduced by up to 25% relative to controls. There were also strong reductions in seawater concentrations of the climate-active compound dimethylsulfide in CO2-enriched mesocosms. We conclude that ocean acidification can lower calcifying phytoplankton productivity, potentially creating a positive feedback to the climate system.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-27
    Keywords: BIOACID; Biogenic silica; Biological Impacts of Ocean Acidification; Calculated; Carbon, organic, particulate; CTD; DATE/TIME; Day of experiment; KOSMOS_2011_Bergen; MESO; Mesocosm experiment; Mesocosm label; Nitrogen, total, particulate; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Phosphorus, particulate; Ratio; Raunefjord; SOPRAN; Spectrophotometry; Surface Ocean Processes in the Anthropocene; Total organic carbon analyzer (TOC-VCPH); Vertical flux; Vertical flux, biogenic silica; Vertical flux, biogenic silica, cumulated; Vertical flux, carbon; Vertical flux, carbon, cumulated; Vertical flux, cumulated; Vertical flux, nitrogen; Vertical flux, nitrogen, cumulated; Vertical flux, phosphorus; Vertical flux, phosphorus, cumulated; Volume
    Type: Dataset
    Format: text/tab-separated-values, 8288 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...