GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: We conducted a year-round mesozooplankton study in the Arctic Kongsfjord from August 1998 until July 1999 to investigate seasonal abundance and vertical as well as stage distributions of the prevalent taxa. It is the first investigation in Kongsfjord that covers the Arctic winter season and provides reasonable estimates also of small-sized copepod species. Abundant smaller copepods comprised Oithona similis, Pseudocalanus minutus, Microcalanus spp., Triconia borealis and Acartia longiremis. Among the larger copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Metridia longa dominated. The thecosome pteropod Limacina helicina was also an important component. Abundance maxima occurred in November (988,669 ind. m−2) with one to two orders of magnitude higher numbers as compared to all other months (39,832–200,067 ind. m−2). The summers of 1998 and 1999 were characterized by intrusions of Atlantic water, but the community was not entirely dominated by advected boreal species. During winter, the majority of the mesozooplankton occurred below 100 m. Advection is the most likely reason for the accumulation of zooplankton at depth in winter, but local production may also contribute to high overwintering numbers. Much lower abundances of most species in spring suggest high winter mortality and emphasize the importance of sufficient reproductive success during the previous summer to ensure enough winter survivors as seed stock for the coming reproductive season. This study was conducted prior to the recent warming trend in the Arctic. Therefore, it provides valuable baseline data and allows comparing present and future states of the zooplankton community in Kongsfjord.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Handbook on Marine Environment Protection, Cham, Switzerland, Springer, 21 p., pp. 353-373, ISBN: 978-3-319-60156-4
    Publication Date: 2018-02-09
    Description: In this chapter, the effects of temperature change—as a main aspect of climate change—on marine biodiversity are assessed. Starting from a general discussion of species responses to temperature, the chapter presents how species respond to warming. These responses comprise adaptation and phenotypic plasticity as well as range shifts. The observed range shifts show more rapid shifts at the poleward range edge than at the equator-near edge, which probably reflects more rapid immigration than extinction in a warming world. A third avenue of changing biodiversity is change in species interactions, which can be altered by temporal and spatial shifts in interacting species. We then compare the potential changes in biodiversity to actual trends recently addressed in empirical synthesis work on local marine biodiversity, which lead to conceptual issues in quantifying the degree of biodiversity change. Finally we assess how climate change impacts the protection of marine environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Endangered Species Research 30 (2016): 239-253, doi:10.3354/esr00739.
    Description: Distribution and movement patterns of Antarctic blue whales Balaenoptera musculus intermedia at large temporal and spatial scales are still poorly understood. The objective of this study was to explore spatio-temporal distribution patterns of Antarctic blue whales in the Atlantic sector of the Southern Ocean, using passive acoustic monitoring data. Multi-year data were collected between 2008 and 2013 by 11 recorders deployed in the Weddell Sea and along the Greenwich meridian. Antarctic blue whale Z-calls were detected via spectrogram cross-correlation. A Blue Whale Index was developed to quantify the proportion of time during which acoustic energy from Antarctic blue whales dominated over background noise. Our results show that Antarctic blue whales were acoustically present year-round, with most call detections between January and April. During austral summer, the number of detected calls peaked synchronously throughout the study area in most years, and hence, no directed meridional movement pattern was detectable. During austral winter, vocalizations were recorded at latitudes as high as 69°S, with sea ice cover exceeding 90%, suggesting that some Antarctic blue whales overwinter in Antarctic waters. Polynyas likely serve as an important habitat for baleen whales during austral winter, providing food and reliable access to open water for breathing. Overall, our results support increasing evidence of a complex and non-obligatory migratory behavior of Antarctic blue whales, potentially involving temporally and spatially dynamic migration routes and destinations, as well as variable timing of migration to and from the feeding grounds.
    Keywords: Passive acoustic monitoring ; Antarctic blue whale ; Balaenoptera musculus intermedia ; Baleen whale migration ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...